Independent multi-part (different techniques)

A question is this type if and only if it contains multiple independent parts where integration by parts is used in one part and completely different integration techniques (substitution, partial fractions, trigonometric identities) are used in other parts, with no connection between parts.

23 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE P3 2013 June Q8
10 marks Standard +0.3
8
  1. Show that \(\int _ { 2 } ^ { 4 } 4 x \ln x \mathrm {~d} x = 56 \ln 2 - 12\).
  2. Use the substitution \(u = \sin 4 x\) to find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 24 } \pi } \cos ^ { 3 } 4 x \mathrm {~d} x\).
Edexcel C34 2018 June Q1
6 marks Moderate -0.8
  1. (i) Find
$$\int \frac { 2 x ^ { 2 } + 5 x + 1 } { x ^ { 2 } } \mathrm {~d} x , \quad x > 0$$ (ii) Find $$\int x \cos 2 x \mathrm {~d} x$$
Edexcel C4 2008 January Q4
9 marks Moderate -0.3
4. (i) Find \(\int \ln \left( \frac { x } { 2 } \right) \mathrm { d } x\).
(ii) Find the exact value of \(\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \sin ^ { 2 } x \mathrm {~d} x\).
Edexcel C4 2009 January Q6
13 marks Standard +0.3
6. (a) Find \(\int \tan ^ { 2 } x \mathrm {~d} x\).
(b) Use integration by parts to find \(\int \frac { 1 } { x ^ { 3 } } \ln x \mathrm {~d} x\).
(c) Use the substitution \(u = 1 + e ^ { x }\) to show that $$\int \frac { \mathrm { e } ^ { 3 x } } { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } - \mathrm { e } ^ { x } + \ln \left( 1 + \mathrm { e } ^ { x } \right) + k$$ where \(k\) is a constant.
Edexcel C4 2014 January Q2
10 marks Standard +0.3
2. (i) Find $$\int x \cos \left( \frac { x } { 2 } \right) \mathrm { d } x$$ (ii) (a) Express \(\frac { 1 } { x ^ { 2 } ( 1 - 3 x ) }\) in partial fractions.
(b) Hence find, for \(0 < x < \frac { 1 } { 3 }\) $$\int \frac { 1 } { x ^ { 2 } ( 1 - 3 x ) } \mathrm { d } x$$
Edexcel P4 2023 June Q5
10 marks Standard +0.3
  1. (i) Find
$$\int x ^ { 2 } \mathrm { e } ^ { x } \mathrm {~d} x$$ (4)
(ii) Use the substitution \(u = \sqrt { 1 - 3 x }\) to show that $$\int \frac { 27 x } { \sqrt { 1 - 3 x } } \mathrm {~d} x = - 2 ( 1 - 3 x ) ^ { \frac { 1 } { 2 } } ( A x + B ) + k$$ where \(A\) and \(B\) are integers to be found and \(k\) is an arbitrary constant.
Edexcel P4 2022 October Q7
12 marks Standard +0.3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Use the substitution \(u = \mathrm { e } ^ { x } - 3\) to show that $$\int _ { \ln 5 } ^ { \ln 7 } \frac { 4 \mathrm { e } ^ { 3 x } } { \mathrm { e } ^ { x } - 3 } \mathrm {~d} x = a + b \ln 2$$ where \(a\) and \(b\) are constants to be found.
  2. Show, by integration, that $$\int 3 \mathrm { e } ^ { x } \cos 2 x \mathrm {~d} x = p \mathrm { e } ^ { x } \sin 2 x + q \mathrm { e } ^ { x } \cos 2 x + c$$ where \(p\) and \(q\) are constants to be found and \(c\) is an arbitrary constant.
Edexcel P4 2023 October Q3
12 marks Standard +0.3
  1. In this question you must show all stages of your working.
\section*{Solutions based on calculator technology are not acceptable.}
  1. Use integration by parts to find the exact value of $$\int _ { 0 } ^ { 4 } x ^ { 2 } \mathrm { e } ^ { 2 x } \mathrm {~d} x$$ giving your answer in simplest form.
  2. Use integration by substitution to show that $$\int _ { 3 } ^ { \frac { 21 } { 2 } } \frac { 4 x } { ( 2 x - 1 ) ^ { 2 } } \mathrm {~d} x = a + \ln b$$ where \(a\) and \(b\) are constants to be found.
OCR MEI C3 Q6
8 marks Moderate -0.3
6
  1. Find \(\int x \cos 2 x d x\).
  2. Using the substitution \(u = x ^ { 2 } + 1\), or otherwise, find the exact value of \(\int _ { 2 } ^ { 3 } \frac { x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
OCR C4 Q1
4 marks Moderate -0.3
  1. Find \(\int x \mathrm { e } ^ { 3 x } \mathrm {~d} x\).
  2. Find the quotient and remainder when \(\left( x ^ { 4 } + x ^ { 3 } - 5 x ^ { 2 } - 9 \right)\) is divided by \(\left( x ^ { 2 } + x - 6 \right)\).
  3. Differentiate each of the following with respect to \(x\) and simplify your answers.
    1. \(\cot x ^ { 2 }\)
    2. \(\frac { \sin x } { 3 + 2 \cos x }\)
    3. (i) Expand \(( 1 - 3 x ) ^ { - 2 } , | x | < \frac { 1 } { 3 }\), in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
    4. Hence, or otherwise, show that for small \(x\),
    $$\left( \frac { 2 - x } { 1 - 3 x } \right) ^ { 2 } \approx 4 + 20 x + 85 x ^ { 2 } + 330 x ^ { 3 }$$
OCR C4 Q3
8 marks Standard +0.3
3. Find
  1. \(\int \frac { x } { 2 - x ^ { 2 } } \mathrm {~d} x\),
  2. \(\int x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x\).
OCR C4 Q7
11 marks Standard +0.3
  1. (i) Find
$$\int x ^ { 2 } \sin x \mathrm {~d} x$$ (ii) Use the substitution \(u = 1 + \sin x\) to find the value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos x ( 1 + \sin x ) ^ { 3 } d x$$
OCR C4 Q8
13 marks Standard +0.3
8. (i) Find $$\int x ^ { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } x } \mathrm {~d} x$$ (ii) Using the substitution \(u = \sin t\), evaluate $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { 2 } 2 t \cos t \mathrm {~d} t$$
AQA Paper 3 Specimen Q3
13 marks Moderate -0.3
3 A circular ornamental garden pond, of radius 2 metres, has weed starting to grow and cover its surface. As the weed grows, it covers an area of \(A\) square metres. A simple model assumes that the weed grows so that the rate of increase of its area is proportional to \(A\). 3
  1. Show that the area covered by the weed can be modelled by
    where \(B\) and \(k\) are constants and \(t\) is time in days since the weed was first noticed.
    [0pt] [4 marks] $$A = B \mathrm { e } ^ { k t }$$ 3
  2. When it was first noticed, the weed covered an area of \(0.25 \mathrm {~m} ^ { 2 }\). Twenty days later the weed covered an area of \(0.5 \mathrm {~m} ^ { 2 }\) 3
    1. State the value of \(B\).
      [0pt] [1 mark] 3
  3. (ii) Show that the model for the area covered by the weed can be written as $$A = 2 ^ { \frac { t } { 20 } - 2 }$$ [4 marks]
    Question 3 continues on the next page 3
  4. (iii) How many days does it take for the weed to cover half of the surface of the pond?
    [0pt] [2 marks]
    3
  5. State one limitation of the model.
    3
  6. Suggest one refinement that could be made to improve the model. \(4 \quad \int _ { 1 } ^ { 2 } x ^ { 3 } \ln ( 2 x ) \mathrm { d } x\) can be written in the form \(p \ln 2 + q\), where \(p\) and \(q\) are rational numbers. Find \(p\) and \(q\).
    [0pt] [5 marks]
AQA C3 2007 January Q4
12 marks Moderate -0.3
4
  1. Use integration by parts to find \(\int x \sin x \mathrm {~d} x\).
  2. Using the substitution \(u = x ^ { 2 } + 5\), or otherwise, find \(\int x \sqrt { x ^ { 2 } + 5 } \mathrm {~d} x\).
  3. The diagram shows the curve \(y = x ^ { 2 } - 9\) for \(x \geqslant 0\). \includegraphics[max width=\textwidth, alt={}, center]{6890a681-2b7f-4853-a5f0-f88b7b435367-3_844_663_685_694} The shaded region \(R\) is bounded by the curve, the lines \(y = 1\) and \(y = 2\), and the \(y\)-axis. Find the exact value of the volume of the solid generated when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { y }\)-axis.
AQA C3 2011 January Q5
6 marks Moderate -0.3
5
  1. Find \(\int \frac { 1 } { 3 + 2 x } \mathrm {~d} x\).
  2. By using integration by parts, find \(\int x \sin \frac { x } { 2 } \mathrm {~d} x\).
AQA C3 2005 June Q3
8 marks Moderate -0.3
3
  1. Find \(\int \mathrm { e } ^ { 4 x } \mathrm {~d} x\).
  2. Use integration by parts to find \(\int \mathrm { e } ^ { 4 x } ( 2 x + 1 ) \mathrm { d } x\).
  3. By using the substitution \(u = 1 + \ln x\), or otherwise, find \(\int \frac { 1 + \ln x } { x } \mathrm {~d} x\).
Edexcel C4 Q1
6 marks Standard +0.3
  1. Use integration by parts to find the exact value of \(\int _ { 1 } ^ { 3 } x ^ { 2 } \ln x \mathrm {~d} x\).
    (6)
  2. Fluid flows out of a cylindrical tank with constant cross section. At time \(t\) minutes, \(t \geq 0\), the volume of fluid remaining in the tank is \(V \mathrm {~m} ^ { 3 }\). The rate at which the fluid flows, in \(\mathrm { m } ^ { 3 } \mathrm {~min} ^ { - 1 }\), is proportional to the square root of \(V\).
    1. Show that the depth \(h\) metres of fluid in the tank satisfies the differential equation
    $$\frac { \mathrm { d } h } { \mathrm {~d} t } = - k \sqrt { } h , \quad \text { where } k \text { is a positive constant. }$$
  3. Show that the general solution of the differential equation may be written as $$h = ( A - B t ) ^ { 2 } , \quad \text { where } A \text { and } B \text { are constants. }$$ Given that at time \(t = 0\) the depth of fluid in the tank is 1 m , and that 5 minutes later the depth of fluid has reduced to 0.5 m ,
  4. find the time, \(T\) minutes, which it takes for the tank to empty.
  5. Find the depth of water in the tank at time \(0.5 T\) minutes.
WJEC Unit 3 Specimen Q8
14 marks Standard +0.3
8. (a) Integrate
  1. \(\quad \mathrm { e } ^ { - 3 x + 5 }\)
  2. \(x ^ { 2 } \ln x\) (b) Use an appropriate substitution to show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } } \mathrm {~d} x = \frac { \pi } { 12 } - \frac { \sqrt { 3 } } { 8 }$$
Edexcel C4 Q14
12 marks Standard +0.3
14. (i) Use integration by parts to find the exact value of \(\int _ { 1 } ^ { 3 } x ^ { 2 } \ln x \mathrm {~d} x\).
(ii) Use the substitution \(x = \sin \theta\) to show that, for \(| x | \leq 1\), \(\int \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x = \frac { x } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } } + c\), where \(c\) is an arbitrary constant.
AQA C3 2010 January Q8
11 marks Moderate -0.3
8
  1. Using integration by parts, find \(\int x \sin ( 2 x - 1 ) \mathrm { d } x\).
  2. Use the substitution \(u = 2 x - 1\) to find \(\int \frac { x ^ { 2 } } { 2 x - 1 } \mathrm {~d} x\), giving your answer in terms of \(x\).
    (6 marks)
AQA C3 2007 June Q6
9 marks Moderate -0.3
6
  1. Use integration by parts to find \(\int x \mathrm { e } ^ { 5 x } \mathrm {~d} x\).
    1. Use the substitution \(u = \sqrt { x }\) to show that $$\int \frac { 1 } { \sqrt { x } ( 1 + \sqrt { x } ) } \mathrm { d } x = \int \frac { 2 } { 1 + u } \mathrm {~d} u$$
    2. Find the exact value of \(\int _ { 1 } ^ { 9 } \frac { 1 } { \sqrt { x } ( 1 + \sqrt { x } ) } \mathrm { d } x\).
AQA Paper 3 2024 June Q12
1 marks Easy -3.0
12 A random sample of 84 students was asked how many revision websites they had visited in the past month. The data is summarised in the table below.
Number of websitesFrequency
01
14
218
316
45
537
62
71
Find the interquartile range of the number of websites visited by these 84 students.
Circle your answer.
[0pt] [1 mark]
341942 Identify this Venn diagram. Tick ( ✓ ) one box. \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_506_501_584_374} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_117_111_580_897} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_508_504_580_1203} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_117_120_580_1710} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_508_501_1135_374} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_112_111_1133_897} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_505_506_1133_1201} \includegraphics[max width=\textwidth, alt={}, center]{deec0d32-b031-4227-bc80-7150a0acbc94-23_112_109_1133_1717} Turn over for the next question