Sequential multi-part (building on previous)

A question is this type if and only if it contains multiple parts where integration by parts in a later part depends on or uses results from earlier parts involving other techniques like algebraic manipulation, substitution, or simplification.

11 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2018 October Q8
10 marks Standard +0.3
8. (i) Find \(\int x \sin x d x\) (ii) (a) Use the substitution \(x = \sec \theta\) to show that
(b) Hence find the exact value of $$\int _ { 1 } ^ { 2 } \sqrt { 1 - \frac { 1 } { x ^ { 2 } } } \mathrm {~d} x = \int _ { 0 } ^ { \frac { \pi } { 3 } } \tan ^ { 2 } \theta \mathrm {~d} \theta$$ Hence find the exact value of $$\int _ { 1 } ^ { 2 } \sqrt { 1 - \frac { 1 } { x ^ { 2 } } } \mathrm {~d} x$$
Edexcel C4 2012 January Q2
6 marks Standard +0.8
2. (a) Use integration by parts to find \(\int x \sin 3 x \mathrm {~d} x\).
(b) Using your answer to part (a), find \(\int x ^ { 2 } \cos 3 x \mathrm {~d} x\).
Edexcel C4 2007 June Q3
7 marks Standard +0.3
3. (a) Find \(\int x \cos 2 x d x\).
(b) Hence, using the identity \(\cos 2 x = 2 \cos ^ { 2 } x - 1\), deduce \(\int x \cos ^ { 2 } x \mathrm {~d} x\).
Edexcel C4 2008 June Q2
6 marks Moderate -0.3
2. (a) Use integration by parts to find \(\int x \mathrm { e } ^ { x } \mathrm {~d} x\).
(b) Hence find \(\int x ^ { 2 } \mathrm { e } ^ { x } \mathrm {~d} x\).
Edexcel C4 2009 June Q6
8 marks Standard +0.3
6. (a) Find \(\int \sqrt { } ( 5 - x ) \mathrm { d } x\).
(2) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c2622c33-9436-4254-a728-10ba4703a28c-11_503_1270_370_335} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve with equation $$y = ( x - 1 ) \sqrt { } ( 5 - x ) , \quad 1 \leqslant x \leqslant 5$$ (b) (i) Using integration by parts, or otherwise, find $$\int ( x - 1 ) \sqrt { } ( 5 - x ) \mathrm { d } x$$ (ii) Hence find \(\int _ { 1 } ^ { 5 } ( x - 1 ) \sqrt { } ( 5 - x ) \mathrm { d } x\).
OCR C4 2006 January Q4
7 marks Standard +0.3
4
  1. Use integration by parts to find \(\int x \sec ^ { 2 } x \mathrm {~d} x\).
  2. Hence find \(\int x \tan ^ { 2 } x \mathrm {~d} x\).
OCR MEI C3 2011 June Q8
18 marks Standard +0.8
8 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82825739-6239-4afd-9621-538d35c09f28-3_479_1061_342_541} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } + 2 }\).
  1. Show algebraically that \(\mathrm { f } ( x )\) is an even function, and state how this property relates to the curve \(y = \mathrm { f } ( x )\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Show that \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { x } } { \left( \mathrm { e } ^ { x } + 1 \right) ^ { 2 } }\).
  4. Hence, using the substitution \(u = \mathrm { e } ^ { x } + 1\), or otherwise, find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, and the lines \(x = 0\) and \(x = 1\).
  5. Show that there is only one point of intersection of the curves \(y = \mathrm { f } ( x )\) and \(y = \frac { 1 } { 4 } \mathrm { e } ^ { x }\), and find its coordinates.
OCR C4 2014 June Q8
9 marks Standard +0.8
8
  1. Use division to show that \(\frac { t ^ { 3 } } { t + 2 } \equiv t ^ { 2 } - 2 t + 4 - \frac { 8 } { t + 2 }\).
  2. Find \(\int _ { 1 } ^ { 2 } 6 t ^ { 2 } \ln ( t + 2 ) \mathrm { d } t\). Give your answer in the form \(A + B \ln 3 + C \ln 4\).
AQA C3 2010 June Q7
11 marks Standard +0.3
7
  1. Use integration by parts to find:
    1. \(\quad \int x \cos 4 x \mathrm {~d} x\);
      (4 marks)
    2. \(\int x ^ { 2 } \sin 4 x d x\).
      (4 marks)
  2. The region bounded by the curve \(y = 8 x \sqrt { ( \sin 4 x ) }\) and the lines \(x = 0\) and \(x = 0.2\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the value of the volume of the solid generated, giving your answer to three significant figures.
    (3 marks)
AQA C3 Q10
Standard +0.3
10
    1. By writing \(\ln x\) as \(( \ln x ) \times 1\), use integration by parts to find \(\int \ln x \mathrm {~d} x\).
    2. Find \(\int ( \ln x ) ^ { 2 } \mathrm {~d} x\).
  1. Use the substitution \(u = \sqrt { x }\) to find the exact value of $$\int _ { 1 } ^ { 4 } \frac { 1 } { x + \sqrt { x } } \mathrm {~d} x$$ (7 marks)
Edexcel AEA 2018 June Q6
17 marks Challenging +1.8
6. (a) Use the substitution \(u = \sqrt { t }\) to show that $$\int _ { 1 } ^ { x } \frac { \ln t } { \sqrt { t } } \mathrm {~d} t = 4 - 4 \sqrt { x } + 2 \sqrt { x } \ln x \quad x \geqslant 1$$ (b) The function g is such that $$\int _ { 1 } ^ { x } \mathrm {~g} ( t ) \mathrm { d } t = x - \sqrt { x } \ln x - 1 \quad x \geqslant 1$$
  1. Use differentiation to find the function g .
  2. Evaluate \(\int _ { 4 } ^ { 16 } \mathrm {~g} ( t ) \mathrm { d } t\) and simplify your answer.
    (c) Find the value of \(x\) (where \(x > 1\) ) that gives the maximum value of $$\int _ { x } ^ { x + 1 } \frac { \ln t } { 2 ^ { t } } \mathrm {~d} t$$