Questions Further Mechanics A AS (52 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI Further Mechanics A AS Specimen Q6
6 A sack of beans of mass 40 kg is pulled from rest at point A up a non-uniform slope onto and along a horizontal platform. Fig. 6 shows this slope AB and the platform BC , which is a vertical distance of 12 m above A. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{be1851d6-af11-40e1-8a36-5938ee7864d4-6_253_1203_504_477} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Calculate the gain in the gravitational potential energy of the sack when it is moved from A to the platform. The sack has a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) by the time it reaches C at the far end of the platform. The total work done against friction in moving the sack from A to C is 484 J . There are no other resistances to the sack's motion.
  2. Calculate the total work done in moving the sack between the points A and C . At point C , travelling at \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the sack starts to slide down a straight chute inclined at \(\alpha\) to the horizontal. Point D at the bottom of the chute is at the same vertical height as A , as shown in Fig. 6. The chute is rough and the coefficient of friction between the chute and the sack is 0.6 . During this part of the motion, again the only resistance to the motion of the sack is friction.
  3. Use an energy method to calculate the value of \(\alpha\) given that the sack is travelling at \(3 \mathrm {~ms} ^ { - 1 }\) when it reaches D . For safety reasons the sack needs to arrive at D with a speed of less than \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The value of \(\alpha\) can be adjusted to try to achieve this.
  4. (A) Find the range of values of \(\alpha\) which achieve a safe speed at D .
    (B) Comment on whether adjusting \(\alpha\) is a practical way of achieving a safe speed at D .
OCR MEI Further Mechanics A AS Specimen Q7
7 Rose and Steve collide while sitting firmly on trays that are sliding on smooth horizontal ice. There are no external driving forces. Fig. 7 shows the masses of Rose and of Steve with their trays, their velocities just before their collision and the line of their motion and of their impact. Immediately after the collision, Rose has a velocity of \(0.28 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the direction of her motion before the collision. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{be1851d6-af11-40e1-8a36-5938ee7864d4-7_325_1047_587_482} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find Steve's velocity after the collision.
  2. Find the coefficient of restitution between Rose and Steve on their trays. Shortly after the collision, Steve catches Rose's hand, pulls her towards him with a horizontal impulse of 4.48 Ns and then lets go of her hand.
  3. Calculate Rose's velocity after the pull. When they collide again they hold one another and move together with a common speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  4. Calculate \(V\).
  5. Why did you need to know that there are no driving forces and that the ice is smooth? {www.ocr.org.uk}) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
    OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }