Questions Further Additional Pure (85 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR Further Additional Pure 2018 December Q3
3
  1. Show that \(10 ^ { 2 } \equiv 6 ( \bmod 47 )\).
  2. Determine the integer \(r\), with \(0 < r < 47\), such that \(6 r \equiv 1 ( \bmod 47 )\).
  3. Determine the least positive integer \(n\) for which \(10 ^ { n } \equiv 1\) or \(- 1 ( \bmod 47 )\).
OCR Further Additional Pure 2018 December Q4
4 The set \(L\) consists of all points \(( x , y )\) in the cartesian plane, with \(x \neq 0\). The operation ◇ is defined by \(( a , b ) \diamond ( c , d ) = ( a c , b + a d )\) for \(( a , b ) , ( c , d ) \in L\).
    1. Show that \(L\) is closed under ◇.
    2. Prove that \(\diamond\) is associative on \(L\).
    3. Find the identity element of \(L\) under ◇ .
    4. Find the inverse element of \(( a , b )\) under ◇.
  1. Find a subgroup of \(( L , \diamond )\) of order 2.
OCR Further Additional Pure 2018 December Q5
5 Torque is a vector quantity that measures how much a force acting on an object causes that object to rotate. The torque (about the origin), \(\mathbf { T }\), exerted on an object is given by \(\mathbf { T } = \mathbf { p } \times \mathbf { F }\), where \(\mathbf { F }\) is the force acting on the object and \(\mathbf { p }\) is the position vector of the point at which \(\mathbf { F }\) is applied to the object. The points \(A\) and \(B\), with position vectors \(\mathbf { a } = 3 \mathbf { i } + 4 \mathbf { j } + \mathbf { k }\) and \(\mathbf { b } = 3 \mathbf { i } + 5 \mathbf { j } + \mathbf { k }\) are on the surface of a rock. The force \(\mathbf { F } _ { 1 } = 6 \mathbf { i } + 7 \mathbf { j } - 3 \mathbf { k }\) is applied to the rock at \(A\) while the force \(\mathbf { F } _ { 2 } = - 7 \mathbf { i } - 10 \mathbf { j } + 2 \mathbf { k }\) is applied to the rock at \(B\).
  1. Find the torque (about the origin) exerted on the rock by \(\mathbf { F } _ { 1 }\).
  2. Determine which of the two forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) exerts a torque (about the origin) of greater magnitude on the rock.
  3. Show that the torque (about the origin) is the same as your answer to part (a) when \(\mathbf { F } _ { 1 }\) acts on the rock at any point on the line \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { p }\), where \(\mathbf { p }\) is a vector in the same direction as \(\mathbf { F } _ { 1 }\). A third force \(\mathbf { F } _ { 3 }\) is now applied to the rock at \(A\), which exerts zero torque (about the origin).
  4. Show that \(\mathbf { F } _ { 3 }\) must act in the direction of the line through \(A\) and the origin.
OCR Further Additional Pure 2018 December Q6
6 For positive integers \(n\), the integrals \(I _ { n }\) are given by \(I _ { n } = \int _ { 1 } ^ { 5 } x ^ { n } \sqrt { 2 + x ^ { 2 } } \mathrm {~d} x\).
  1. Show that \(I _ { 1 } = 26 \sqrt { 3 }\).
  2. Prove that, for \(n \geqslant 3 , ( n + 2 ) I _ { n } = 3 \sqrt { 3 } \left( 27 \times 5 ^ { n - 1 } - 1 \right) - 2 ( n - 1 ) I _ { n - 2 }\).
  3. Determine the exact value of \(I _ { 5 }\) as a rational multiple of \(\sqrt { 3 }\).
OCR Further Additional Pure 2018 December Q7
7 For each value of \(t\), the surface \(S _ { t }\) has equation \(z = t x ^ { 2 } + y ^ { 2 } + 3 x y - y\).
  1. Verify that there are no stationary points on \(S _ { t }\) when \(t = \frac { 9 } { 4 }\).
  2. Determine, as \(t\) varies, the nature of any stationary point(s) of \(S _ { t }\).
    (You do not have to find the coordinates of the stationary points.) \section*{OCR} Oxford Cambridge and RSA
OCR Further Additional Pure 2017 Specimen Q1
1 A curve is given by \(x = t ^ { 2 } - 2 \ln t , y = 4 t\) for \(t > 0\). When the arc of the curve between the points where \(t = 1\) and \(t = 4\) is rotated through \(2 \pi\) radians about the \(x\)-axis, a surface of revolution is formed with surface area \(A\).
Given that \(A = k \pi\), where \(k\) is an integer, write down an integral which gives \(A\) and find the value of \(k\).
OCR Further Additional Pure 2017 Specimen Q5
5 In this question you must show detailed reasoning.
It is given that \(I _ { n } = \int _ { 0 } ^ { \pi } \sin ^ { n } \theta \mathrm {~d} \theta\) for \(n \geq 0\).
  1. Prove that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\) for \(n \geq 2\).
  2. Evaluate \(I _ { 1 }\) and use the reduction formula to determine the exact value of \(\int _ { 0 } ^ { \pi } \cos ^ { 2 } \theta \sin ^ { 5 } \theta \mathrm {~d} \theta\).
OCR Further Additional Pure 2017 Specimen Q6
6 A surface \(S\) has equation \(z = \mathrm { f } ( x , y )\), where \(\mathrm { f } ( x , y ) = 2 x ^ { 2 } - y ^ { 2 } + 3 x y + 17 y\). It is given that \(S\) has a single stationary point, \(P\).
  1. Determine the coordinates, and the nature, of \(P\).
  2. Find the equation of the tangent plane to \(S\) at the point \(Q ( 1,2,38 )\).
OCR Further Additional Pure 2017 Specimen Q7
7 In order to rescue them from extinction, a particular species of ground-nesting birds is introduced into a nature reserve. The number of breeding pairs of these birds in the nature reserve, \(t\) years after their introduction, is denoted by \(N _ { t }\). The initial number of breeding pairs is given by \(N _ { 0 }\). An initial discrete population model is proposed for \(N _ { t }\). $$\text { Model I: } N _ { t + 1 } = \frac { 6 } { 5 } N _ { t } \left( 1 - \frac { 1 } { 900 } N _ { t } \right)$$
  1. (a) For Model I, show that the steady state values of the number of breeding pairs are 0 and 150 .
    (b) Show that \(N _ { t + 1 } - N _ { t } < 150 - N _ { t }\) when \(N _ { t }\) lies between 0 and 150 .
    (c) Hence determine the long-term behaviour of the number of breeding pairs of this species of birds in the nature reserve predicted by Model I when \(N _ { 0 } \in ( 0,150 )\). An alternative discrete population model is proposed for \(N _ { t }\). $$\text { Model II: } N _ { t + 1 } = \operatorname { INT } \left( \frac { 6 } { 5 } N _ { t } \left( 1 - \frac { 1 } { 900 } N _ { t } \right) \right)$$
  2. Given that \(N _ { 0 } = 8\), find the value of \(N _ { 4 }\) for each of the two models and give a reason why Model II may be considered more suitable.
OCR Further Additional Pure 2017 Specimen Q8
8 The set \(X\) consists of all \(2 \times 2\) matrices of the form \(\left( \begin{array} { r r } x & - y
y & x \end{array} \right)\), where \(x\) and \(y\) are real numbers which are not both zero.
  1. (a) The matrices \(\left( \begin{array} { c c } a & - b
    b & a \end{array} \right)\) and \(\left( \begin{array} { c c } c & - d
    d & c \end{array} \right)\) are both elements of \(X\). Show that \(\left( \begin{array} { c c } a & - b
    b & a \end{array} \right) \left( \begin{array} { c c } c & - d
    d & c \end{array} \right) = \left( \begin{array} { c c } p & - q
    q & p \end{array} \right)\) for some real numbers \(p\) and \(q\) to be found in terms of \(a , b , c\) and \(d\).
    (b) Prove by contradiction that \(p\) and \(q\) are not both zero.
  2. Prove that \(X\), under matrix multiplication, forms a group \(G\).
    [0pt] [You may use the result that matrix multiplication is associative.]
  3. Determine a subgroup of \(G\) of order 17.