| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||||||||||||||
| 1 | (a) |
|
|
|
|
| ||||||||||||||||||
| 1 | (b) |
|
|
|
|
| ||||||||||||||||||
| 2 | (a) | \([ \rho ] = \mathrm { ML } ^ { - 3 }\) |
| 3.3 | If M, L and T not used B0, but do not penalise any further instances of non-standard notation as long as it is used consistently. | ||||||||||||||||||||||||
| 2 | (b) |
|
|
| Allow this mark as long as the equations for M and T are correct. | Do not allow any marks for using addition instead of multiplication | |||||||||||||||||||||||
| 2 | (c) | Sounds of any wavelength have the same speed through the gas | E1FT | 2.2b | Follow from their \(\gamma\) : If \(\gamma > 0\) then speed increases as wavelength increases (or better - e.g. \(\gamma = 1 / 2 \rightarrow\) speed is proportional to \(\sqrt { } \lambda\) ); if \(\gamma < 0\) then speed decreases as wavelength increases (or better) | ||||||||||
| [1] | |||||||||||||||
| 2 | (d) |
|
|
|
| Using their value of \(\beta\) Allow missing k or use of \(=\) instead of proportion symbol |
| 3 | (a) |
|
|
|
|
| ||||||||||||||||||||||||||||||
| 3 | (b) |
|
|
|
|
|
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| 1 | (a) |
|
|
|
| (25.92) | ||||||||||||
| 1 | (b) |
|
|
|
|
| ||||||||||||
| 1 | (c) |
|
|
|
| \(93.31 \ldots - ( 33.59 \ldots +\) 22.39 ...) |
| 2 | (a) | \begin{tabular}{l} \(\frac { 60000 } { 10 } - R = 1500 \times 3.3\) |
| \(R = 1050\) \(\frac { 60000 } { v } = 1050\) | ||
| The greatest speed is \(57.1 \mathrm {~ms} ^ { - 1 }\) |
| M1 |
| A1 M1 |
| A1 [4] |
| 3.3 |
| 1.1 3.4 |
| 1.1 |
| = 4950 |
| May be -1050 |
| \(\frac { 60000 } { 10 } - k \times 10 = 1500 \times 3.3 k = 105\) |
| \(\frac { 60000 } { v } = 105 v\) \(v ^ { 2 } = 571.4 \ldots\) |
| \(v = 23.9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 |
| [5] |
| 3.3 |
| 1.1 |
| 3.4 |
| 1.1 |
| 1.1 |
| Or \(1050 = 10 k\) |
| Must be positive |
| The constant resistance model does not seem to be very accurate |
| The refined (linear) model (is not perfect but) gives a much more accurate answer than the constant resistance model |
| B1ft |
| B1ft |
| B1 for each of two correct statements about the models. |
| If commenting on the accuracy of (a), must emphasise that (a) is very inaccurate or at least quite inaccurate |
| Do not allow e.g. |
| - model (a) is not very effective |
| - Neither model is accurate |
| - (a) and (b) are not very accurate |
| Clear comparison between the accuracy of the two models (must emphasise that (b) is fairly accurate or considerably more accurate than (a)), or other suitable distinct second comment |
| Do not allow e.g. |
| - model (b) is more accurate than model (a) |
| - (b) is not accurate |
| Do not allow statement claiming that resistance is proportional to speed, or to speed \({ } ^ { 2 }\) |
| Suitable comments for (a): |
| - is very inaccurate |
| - predicted speed is nearly three times the actual value |
| - constant resistance is not a suitable model |
| - both models underestimate the resistance (as top speed is lower than expected) |
| For the linear model (b) |
| - is fairly accurate (but probably underestimates the resistance at higher speeds) |
| - resistance is not proportional to speed but is a much better model than constant resistance |
| 3 | (a) | \(T _ { 2 } \cos \theta = m _ { 2 } g\) \(T _ { 2 } = \frac { m _ { 2 } \times 9.8 } { 0.8 } = 12.25 m _ { 2 }\) |
|
|
|
| |||||||||||
| 3 | (b) | (i) | \(\begin{aligned} | T _ { 2 } \cos \theta + m _ { 1 } g = T _ { 1 } \cos \theta | |||||||||||||
| T _ { 1 } = T _ { 2 } + \frac { 9.8 m _ { 1 } } { 0.8 } = | |||||||||||||||||
| \qquad 12.25 m _ { 2 } + 12.25 m _ { 1 } = \frac { 49 } { 4 } \left( m _ { 1 } + m _ { 2 } \right) \end{aligned}\) |
|
|
|
| |||||||||||||
| 3 | (b) | (ii) | \(\begin{aligned} | T _ { 1 } \sin \theta + T _ { 2 } \sin \theta = m _ { 1 } a | |||||||||||||
| 12.25 \left( m _ { 1 } + m _ { 2 } \right) \times 0.6 + 12.25 m _ { 2 } \times 0.6 = m _ { 1 } \times 0.6 \omega ^ { 2 } | |||||||||||||||||
| \omega ^ { 2 } = \frac { 7.35 m _ { 1 } + 14.7 m _ { 2 } } { 0.6 m _ { 1 } } = \frac { 49 \left( m _ { 1 } + 2 m _ { 2 } \right) } { 4 m _ { 1 } } \end{aligned}\) |
|
|
|
| |||||||||||||
| 3 | (c) | \(\begin{aligned} | \text { E.g } m _ { 1 } \gg m _ { 2 } \Rightarrow \frac { 2 m _ { 2 } } { m _ { 1 } } \approx 0 \text { or } \frac { 49 m _ { 2 } } { 4 m _ { 1 } } \approx 0 | |||||||||||
| \omega \approx \sqrt { \frac { 49 m } { 4 m } } = 3.5 \end{aligned}\) |
|
|
|
|
| 3 | \multirow{3}{*}{(d)} |
|
|
|
|
| ||||||||||||||||||||||
|
|
|
| |||||||||||||||||||||||||
| [5] |
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||||||||||||
| 1 | (a) | \(\begin{aligned} | \text { At constant velocity, } F = 250 = 10000 / v | |||||||||||||||||||
| v = 40 \end{aligned}\) | \(\begin{gathered} \text { M1 } | |||||||||||||||||||||
| \text { A1 } | ||||||||||||||||||||||
| { [ 2 ] } \end{gathered}\) |
| Tractive force \(= P / v =\) resistance | ||||||||||||||||||||
| 1 | (b) | \(\begin{aligned} | D = \frac { 10000 } { 30 } | |||||||||||||||||||
| 10000 - 250 = 1200 a | ||||||||||||||||||||||
| 30 | ||||||||||||||||||||||
| \text { awrt } 0.069 \mathrm {~ms} ^ { - 2 } \end{aligned}\) |
|
|
| |||||||||||||||||||
| 2 | (a) |
|
|
|
|
| ||||||||||||||||
| 2 | (b) |
|
|
|
| Allow in degrees awrt \(66.9 ^ { \circ }\) | ||||||||||||||||
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||
| 3 | (a) |
|
|
|
|
| |||||||||||||||||
| 3 | (b) |
|
|
|
|
| |||||||||||||||||
| 3 | (c) | If \(s = 0\) then \(v = u\) so \(u ^ { 2 } = p u ^ { 2 } + 0 = > p = 1\) |
| 3.4 | Details must be shown | Do not allow use of prior knowledge of \(v ^ { 2 } = u ^ { 2 } + 2 a s\). | |||||||||||||||||
| 3 | (d) |
|
|
| Where \(F\) must be the force acting and \(W\) the work done by this force | Do not allow use of prior knowledge of \(v ^ { 2 } = u ^ { 2 } + 2 a s\). | |||||||||||||||||
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||
| 4 | (a) | \(\begin{aligned} | 1 ^ { \text {st } } \text { Collision: } 3.3 u = 3.3 v _ { A } + 2.2 v _ { B } | ||||||||||||||||||||
| 1 ^ { \text {st } } \text { Collision: } \pm e = v _ { B } - v _ { A } | |||||||||||||||||||||||
| u | |||||||||||||||||||||||
| 3 u = 3 v _ { A } + 2 v _ { B } \text { and } 2 e u = 2 v _ { B } - 2 v _ { A } | |||||||||||||||||||||||
| \Rightarrow 5 v = 3 u - 2 e u \Rightarrow v = \frac { u ( 3 - 2 e ) } { A } | |||||||||||||||||||||||
| \begin{array} { c } 3 u = 3 v _ { A } + 2 v _ { B } \text { and } 3 e u = 3 v _ { B } - 3 v _ { A } | |||||||||||||||||||||||
| \Rightarrow 5 v = 3 u + 3 e u \Rightarrow v _ { B } ^ { v } = \frac { 3 u ( 1 + e ) } { 5 } \end{array} \end{aligned}\) |
|
|
|
| |||||||||||||||||||
| 4 | (b) |
|
|
|
|
| |||||||||||||||||
| M1ft |
| М1 |
| 3.4 |
| 1.1 |
| 2.2a |
| 1.1 |
| Correct condition for further collision (ft their \(V _ { B }\) from (b) |
| Rearranging to 3 term quadratic inequality in \(e\) \(e < { } _ { 3 } ^ { 1 } \text { is not sufficient for } \mathrm { A } 1\) |
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| 1 | (a) | \(1.6 = e \times 2.4 = > e = \begin{aligned} | 2 | ||||||
| 3 \end{aligned}\) | B1 [1] | 1.1 | |||||||
| 1 | (b) | \(4.5 \times - 1.6 - 4.5 \times 2.4 = - 18\) so \(18 \mathrm { Ns } \left( \right.\) or \(\left. \mathrm { kg } \mathrm { ms } ^ { - 1 } \right) \ldots\) ...in the final direction of motion of \(P\) |
| 1.1 1.1 2.2a | Attempt at \(m v - m u\) Allow \(\pm 18\) could be shown on a diagram | Allow sign confusion e.g. 1.6-2.4 Ignore missing units | |||
| 1 | (c) | \(\begin{aligned} | 1 \times 4.5 \times 2.4 ^ { 2 } - { } _ { 2 } ^ { 1 } \times 4.5 \times 1.6 ^ { 2 } | ||||||
| 2 | |||||||||
| 7.2 \mathrm {~J} \end{aligned}\) |
|
| Attempt at \(\pm \begin{gathered} 1 | ||||||
| m v ^ { 2 } - { } ^ { 1 } m u ^ { 2 } | |||||||||
| 2 \end{gathered} \quad 2\). | |||||||||
| 1 | (d) | Not perfectly elastic since KE is lost (due to the collision) |
| 1.2 | or \(e < 1\) but valid reason must be given. | Must mention KE or collision, Not just e.g. "energy lost" |
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||
| 2 | (a) | \(30 \times 10\) 300 J | M1 A1 [2] | 1.1 1.1 | Using Work done \(= F d\) | ||||||||||||||
| 2 | (b) | \(\begin{aligned} | 1 \times 2.4 \times 12 ^ { 2 } + 300 = { } ^ { 1 } \times 2.4 \times 18 ^ { 2 } + W | ||||||||||||||||
| 2 | |||||||||||||||||||
| 10 R = 84 | |||||||||||||||||||
| R = 8.4 \end{aligned}\) |
|
|
|
| |||||||||||||||
| Alternative method \(\begin{aligned} | a = 18 ^ { 2 } - 12 ^ { 2 } | ||||||||||||||||||
| \quad 2 \times 10 | |||||||||||||||||||
| 30 - R = 2.4 \times 9 | |||||||||||||||||||
| R = 8.4 \end{aligned}\) |
|
| |||||||||||||||||
| 2 | (c) |
|
|
| Using \(s = \binom { v + u } { 2 } t\) | Or use Average power \(=\) Force × average speed, i.e. \(P = F _ { ( 2 ) } ^ { v + u } \left( { } _ { 2 } \right)\) | |||||||||||||
|
| Using \(v = u + a t\) to find \(t\) |
| ||||||||||||||||
| [3] | |||||||||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||||||||||||||||||||||||||||
| 2 | (d) | (i) | \(\begin{aligned} | 17.28 = 1.6 \times v _ { Q } | ||||||||||||||||||||||||||||
| v _ { Q } = 10.8 \mathrm {~m} \mathrm {~s} ^ { - 1 } \end{aligned}\) | M1 A1 [2] | 1.1 1.1 | Do not allow -10.8 | |||||||||||||||||||||||||||||
| 2 | (d) | (ii) |
|
|
|
| Do not allow use of KE | |||||||||||||||||||||||||
| 3 | (a) |
|
|
|
|
| ||||||||||||||||||||||||||
| 3 | (b) |
|
|
| Using the formula from (a) | |||||||||||||||||||||||||||
| 3 | (c) |
|
|
|
|
| ||||||||||||||||||||||||||