Questions C3 (1200 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C3 Q4
4. (i) Prove, by counter-example, that the statement $$\text { " } \sec ( A + B ) \equiv \sec A + \sec B , \text { for all } A \text { and } B \text { " }$$ is false.
(ii) Prove that $$\tan \theta + \cot \theta \equiv 2 \operatorname { cosec } 2 \theta , \quad \theta \neq \frac { n \pi } { 2 } , n \in \mathbb { Z }$$
Edexcel C3 Q5
  1. The function f is given by
$$\mathrm { f } : x \mapsto \frac { x } { x ^ { 2 } - 1 } - \frac { 1 } { x + 1 } , x > 1 .$$
  1. Show that \(\mathrm { f } ( x ) = \frac { 1 } { ( x - 1 ) ( x + 1 ) }\).
  2. Find the range of f. The function g is given by $$\mathrm { g } : x \mapsto \frac { 2 } { x } , \quad x > 0 .$$
  3. Solve \(\operatorname { gf } ( x ) = 70\).
Edexcel C3 Q6
6. (a) Express \(2 \cos \theta + 5 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the values of \(R\) and \(\alpha\) to 3 significant figures.
(b) Find the maximum and minimum values of \(2 \cos \theta + 5 \sin \theta\) and the smallest possible value of \(\theta\) for which the maximum occurs. The temperature \(T ^ { \circ } \mathrm { C }\), of an unheated building is modelled using the equation $$T = 15 + 2 \cos \left( \frac { \pi t } { 12 } \right) + 5 \sin \left( \frac { \pi t } { 12 } \right) , \quad 0 \leq t < 24 ,$$ where \(t\) hours is the number of hours after 1200 .
(c) Calculate the maximum temperature predicted by this model and the value of \(t\) when this maximum occurs.
(d) Calculate, to the nearest half hour, the times when the temperature is predicted to be \(12 ^ { \circ } \mathrm { C }\).
Edexcel C3 Q7
7. The function \(f\) is defined by $$f : x \wp \rightarrow | 2 x - a | , x \in \mathbb { R }$$ where \(a\) is a positive constant.
  1. Sketch the graph of \(y = \mathrm { f } ( x )\), showing the coordinates of the points where the graph cuts the axes.
  2. On a separate diagram, sketch the graph of \(y = \mathrm { f } ( 2 x )\), showing the coordinates of the points where the graph cuts the axes.
  3. Given that a solution of the equation \(\mathrm { f } ( x ) = \frac { 1 } { 2 } x\) is \(x = 4\), find the two possible values of \(a\).
Edexcel C3 Q8
8. (a) Prove that $$\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta , \theta \neq \frac { n \pi } { 2 } , \quad n \in \mathbb { Z }$$ (b) Solve, giving exact answers in terms of \(\pi\), $$2 ( 1 - \cos 2 \theta ) = \tan \theta , \quad 0 < \theta < \pi$$ [P2 January 2002 Question 6]
Edexcel C3 Q9
9. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{d0c23635-3b9b-4666-9cb4-21b931fb3719-04_637_1118_279_438}
\end{figure} Figure 2 shows part of the curve \(C\) with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = 0.5 \mathrm { e } ^ { x } - x ^ { 2 } .$$ The curve \(C\) cuts the \(y\)-axis at \(A\) and there is a minimum at the point \(B\).
  1. Find an equation of the tangent to \(C\) at \(A\). The \(x\)-coordinate of \(B\) is approximately 2.15 . A more exact estimate is to be made of this coordinate using iterations \(x _ { n + 1 } = \ln \mathrm { g } \left( x _ { n } \right)\).
  2. Show that a possible form for \(\mathrm { g } ( x )\) is \(\mathrm { g } ( x ) = 4 x\).
  3. Using \(x _ { n + 1 } = \ln 4 x _ { n }\), with \(x _ { 0 } = 2.15\), calculate \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\). Give the value of \(x _ { 3 }\) to 4 decimal places.
Edexcel C3 Q10
10. $$\mathrm { f } ( x ) = \frac { 2 } { x - 1 } - \frac { 6 } { ( x - 1 ) ( 2 x + 1 ) } , x > 1$$
  1. Prove that \(\mathrm { f } ( x ) = \frac { 4 } { 2 x + 1 }\).
  2. Find the range of f.
  3. Find \(\mathrm { f } ^ { - 1 } ( x )\).
  4. Find the range of \(\mathrm { f } ^ { - 1 } ( x )\).
Edexcel C3 Q11
11. Use the derivatives of \(\sin x\) and \(\cos x\) to prove that the derivative of \(\tan x\) is \(\sec ^ { 2 } x\).
Edexcel C3 Q12
12. Express \(\frac { 3 } { x ^ { 2 } + 2 x } + \frac { x - 4 } { x ^ { 2 } - 4 }\) as a single fraction in its simplest form.
[0pt] [P2 June 2002 Question 2]
Edexcel C3 Q13
13. Figure 1
\includegraphics[max width=\textwidth, alt={}, center]{d0c23635-3b9b-4666-9cb4-21b931fb3719-06_626_759_313_537} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = 10 + \ln ( 3 x ) - \frac { 1 } { 2 } \mathrm { e } ^ { x } , 0.1 \leq x \leq 3.3$$ Given that \(\mathrm { f } ( k ) = 0\),
  1. show, by calculation, that \(3.1 < k < 3.2\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). The tangent to the graph at \(x = 1\) intersects the \(y\)-axis at the point \(P\).
    1. Find an equation of this tangent.
    2. Find the exact \(y\)-coordinate of \(P\), giving your answer in the form \(a + \ln b\).
Edexcel C3 Q14
14. $$\mathrm { f } ( x ) = x ^ { 2 } - 2 x - 3 , x \in \mathbb { R } , x \geq 1 .$$
  1. Find the range of f .
  2. Write down the domain and range of \(\mathrm { f } ^ { - 1 }\).
  3. Sketch the graph of \(\mathrm { f } ^ { - 1 }\), indicating clearly the coordinates of any point at which the graph intersects the coordinate axes. Given that \(\mathrm { g } ( x ) = | x - 4 | , x \in \mathbb { R }\),
  4. find an expression for \(\operatorname { gf } ( x )\).
  5. Solve \(\operatorname { gf } ( x ) = 8\).
Edexcel C3 Q15
15. Express \(\frac { y + 3 } { ( y + 1 ) ( y + 2 ) } - \frac { y + 1 } { ( y + 2 ) ( y + 3 ) }\) as a single fraction in its simplest form.
Edexcel C3 Q16
16. (a) Express \(1.5 \sin 2 x + 2 \cos 2 x\) in the form \(R \sin ( 2 x + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving your values of \(R\) and \(\alpha\) to 3 decimal places where appropriate.
(b) Express \(3 \sin x \cos x + 4 \cos ^ { 2 } x\) in the form \(a \cos 2 x + b \sin 2 x + c\), where \(a , b\) and \(c\) are constants to be found.
(c) Hence, using your answer to part (a), deduce the maximum value of \(3 \sin x \cos x + 4 \cos ^ { 2 } x\).
Edexcel C3 Q17
17. The curve \(C\) with equation \(y = p + q \mathrm { e } ^ { x }\), where \(p\) and \(q\) are constants, passes through the point \(( 0,2 )\). At the point \(P ( \ln 2 , p + 2 q )\) on \(C\), the gradient is 5 .
  1. Find the value of \(p\) and the value of \(q\). The normal to \(C\) at \(P\) crosses the \(x\)-axis at \(L\) and the \(y\)-axis at \(M\).
  2. Show that the area of \(\triangle O L M\), where \(O\) is the origin, is approximately 53.8. \section*{18.} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{d0c23635-3b9b-4666-9cb4-21b931fb3719-08_487_695_259_683}
    \end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { e } ^ { - x } - 1\).
  3. Copy Fig. 1 and on the same axes sketch the graph of \(y = \frac { 1 } { 2 } | x - 1 |\). Show the coordinates of the points where the graph meets the axes. The \(x\)-coordinate of the point of intersection of the graph is \(\alpha\).
  4. Show that \(x = \alpha\) is a root of the equation \(x + 2 \mathrm { e } ^ { - x } - 3 = 0\).
  5. Show that \(- 1 < \alpha < 0\). The iterative formula \(x _ { \mathrm { n } + 1 } = - \ln \left[ \frac { 1 } { 2 } \left( 3 - x _ { n } \right) \right]\) is used to solve the equation \(x + 2 \mathrm { e } ^ { - x } - 3 = 0\).
  6. Starting with \(x _ { 0 } = - 1\), find the values of \(x _ { 1 }\) and \(x _ { 2 }\).
  7. Show that, to 2 decimal places, \(\alpha = - 0.58\).
Edexcel C3 Q19
19. The function f is defined by \(\mathrm { f } : x \mapsto \frac { 3 x - 1 } { x - 3 } , x \in \mathbb { R } , x \neq 3\).
  1. Prove that \(\mathrm { f } ^ { - 1 } ( x ) = \mathrm { f } ( x )\) for all \(x \in \mathbb { R } , x \neq 3\).
  2. Hence find, in terms of \(k , \operatorname { ff } ( k )\), where \(x \neq 3\). \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{d0c23635-3b9b-4666-9cb4-21b931fb3719-09_817_1139_623_406}
    \end{figure} Figure 3 shows a sketch of the one-one function g , defined over the domain \(- 2 \leq x \leq 2\).
  3. Find the value of \(\mathrm { fg } ( - 2 )\).
  4. Sketch the graph of the inverse function \(\mathrm { g } ^ { - 1 }\) and state its domain. The function h is defined by \(\mathrm { h } : x \mapsto 2 \mathrm {~g} ( x - 1 )\).
  5. Sketch the graph of the function h and state its range.
Edexcel C3 Q20
20. Express \(\frac { x } { ( x + 1 ) ( x + 3 ) } + \frac { x + 12 } { x ^ { 2 } - 9 }\) as a single fraction in its simplest form.
21. (a) Sketch the graph of \(y = | 2 x + a | , a > 0\), showing the coordinates of the points where the graph meets the coordinate axes.
(b) On the same axes, sketch the graph of \(y = \frac { 1 } { x }\).
(c) Explain how your graphs show that there is only one solution of the equation $$x | 2 x + a | - 1 = 0$$ (d) Find, using algebra, the value of \(x\) for which \(x | 2 x + 1 | - 1 = 0\).
22. The curve with equation \(y = \ln 3 x\) crosses the \(x\)-axis at the point \(P ( p , 0 )\).
(a) Sketch the graph of \(y = \ln 3 x\), showing the exact value of \(p\). The normal to the curve at the point \(Q\), with \(x\)-coordinate \(q\), passes through the origin.
(b) Show that \(x = q\) is a solution of the equation \(x ^ { 2 } + \ln 3 x = 0\).
(c) Show that the equation in part (b) can be rearranged in the form \(x = \frac { 1 } { 3 } \mathrm { e } ^ { - x ^ { 2 } }\).
(d) Use the iteration formula \(x _ { n + 1 } = \frac { 1 } { 3 } \mathrm { e } ^ { - x _ { n } ^ { 2 } }\), with \(x _ { 0 } = \frac { 1 } { 3 }\), to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\). Hence write down, to 3 decimal places, an approximation for \(q\).
23. (a) Express \(\sin x + \sqrt { 3 } \cos x\) in the form \(R \sin ( x + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\).
(b) Show that the equation \(\sec x + \sqrt { 3 } \operatorname { cosec } x = 4\) can be written in the form $$\sin x + \sqrt { 3 } \cos x = 2 \sin 2 x$$ (c) Deduce from parts (a) and (b) that sec \(x + \sqrt { 3 } \operatorname { cosec } x = 4\) can be written in the form $$\sin 2 x - \sin \left( x + 60 ^ { \circ } \right) = 0$$ 24. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{d0c23635-3b9b-4666-9cb4-21b931fb3719-12_526_1052_287_474}
\end{figure} Figure 3 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , x \geq 0\). The curve meets the coordinate axes at the points \(( 0 , c )\) and \(( d , 0 )\). In separate diagrams sketch the curve with equation
(a) \(y = \mathrm { f } ^ { - 1 } ( x )\),
(b) \(y = 3 \mathrm { f } ( 2 x )\). Indicate clearly on each sketch the coordinates, in terms of \(c\) or \(d\), of any point where the curve meets the coordinate axes. Given that f is defined by $$\mathrm { f } : x \mapsto 3 \left( 2 ^ { - x } \right) - 1 , x \in \mathbb { R } , x \geq 0 ,$$ (c) state
(i) the value of \(c\),
(ii) the range of \(f\).
(d) Find the value of \(d\), giving your answer to 3 decimal places. The function g is defined by $$\mathrm { g } : x \rightarrow \log _ { 2 } x , x \in \mathbb { R } , x \geq 1 .$$ (e) Find \(\mathrm { fg } ( x )\), giving your answer in its simplest form.
25. (a) Simplify \(\frac { x ^ { 2 } + 4 x + 3 } { x ^ { 2 } + x }\).
(b) Find the value of \(x\) for which \(\log _ { 2 } \left( x ^ { 2 } + 4 x + 3 \right) - \log _ { 2 } \left( x ^ { 2 } + x \right) = 4\).
26. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto x ^ { 2 } - 2 x + 3 , x \in \mathbb { R } , 0 \leq x \leq 4
& \mathrm {~g} : x \mapsto \lambda x ^ { 2 } + 1 , \text { where } \lambda \text { is a constant, } x \in \mathbb { R } . \end{aligned}$$ (a) Find the range of f .
(b) Given that \(\operatorname { gf } ( 2 ) = 16\), find the value of \(\lambda\).
27. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{d0c23635-3b9b-4666-9cb4-21b931fb3719-13_571_1326_936_438}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , - 1 \leq x \leq 3\). The curve touches the \(x\)-axis at the origin \(O\), crosses the \(x\)-axis at the point \(A ( 2,0 )\) and has a maximum at the point \(B \left( \frac { 4 } { 3 } , 1 \right)\). In separate diagrams, show a sketch of the curve with equation
(a) \(y = \mathrm { f } ( x + 1 )\),
(b) \(y = | \mathrm { f } ( x ) |\),
(c) \(y = \mathrm { f } ( | x | )\),
marking on each sketch the coordinates of points at which the curve
(i) has a turning point,
(ii) meets the \(x\)-axis.
28. (a) Sketch, on the same set of axes, the graphs of $$y = 2 - \mathrm { e } ^ { - x } \text { and } y = \sqrt { } x$$ [It is not necessary to find the coordinates of any points of intersection with the axes.]
Given that \(\mathrm { f } ( x ) = \mathrm { e } ^ { - x } + \sqrt { } x - 2 , x \geq 0\),
(b) explain how your graphs show that the equation \(\mathrm { f } ( x ) = 0\) has only one solution,
(c) show that the solution of \(\mathrm { f } ( x ) = 0\) lies between \(x = 3\) and \(x = 4\). The iterative formula \(x _ { n + 1 } = \left( 2 - \mathrm { e } ^ { - x _ { n } } \right) ^ { 2 }\) is used to solve the equation \(\mathrm { f } ( x ) = 0\).
(d) Taking \(x _ { 0 } = 4\), write down the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), and hence find an approximation to the solution of \(\mathrm { f } ( x ) = 0\), giving your answer to 3 decimal places.
[0pt] [P2 June 2003 Question 5] 28a. (i) Given that \(\cos ( x + 30 ) ^ { \circ } = 3 \cos ( x - 30 ) ^ { \circ }\), prove that \(\tan x ^ { \circ } = - \frac { \sqrt { 3 } } { 2 }\).
(ii) (a) Prove that \(\frac { 1 - \cos 2 \theta } { \sin 2 \theta } \equiv \tan \theta\).
(b) Verify that \(\theta = 180 ^ { \circ }\) is a solution of the equation \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
(c) Using the result in part (a), or otherwise, find the other two solutions, \(0 < \theta < 360 ^ { \circ }\), of the equation using \(\sin 2 \theta = 2 - 2 \cos 2 \theta\).
[0pt] [P2 June 2003 Question 8]
29. (a) Express as a fraction in its simplest form $$\frac { 2 } { x - 3 } + \frac { 13 } { x ^ { 2 } + 4 x - 21 }$$ (b) Hence solve $$\frac { 2 } { x - 3 } + \frac { 13 } { x ^ { 2 } + 4 x - 21 } = 1$$ [P2 November 2003 Question 1]
30. Prove that $$\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } \equiv \cos 2 \theta$$
  1. The functions \(f\) and \(g\) are defined by
$$\begin{aligned} & \mathrm { f } : x \mapsto | x - a | + a , x \in \mathbb { R } ,
& \mathrm {~g} : x \mapsto 4 x + a , \quad x \in \mathbb { R } . \end{aligned}$$ where \(a\) is a positive constant.
(a) On the same diagram, sketch the graphs of f and g , showing clearly the coordinates of any points at which your graphs meet the axes.
(b) Use algebra to find, in terms of \(a\), the coordinates of the point at which the graphs of f and g intersect.
(c) Find an expression for \(\mathrm { fg } ( x )\).
(d) Solve, for \(x\) in terms of \(a\), the equation $$\mathrm { fg } ( x ) = 3 a$$
  1. The curve \(C\) has equation \(y = \mathrm { f } ( x )\), where
$$\mathrm { f } ( x ) = 3 \ln x + \frac { 1 } { x } , \quad x > 0$$ The point \(P\) is a stationary point on \(C\).
(a) Calculate the \(x\)-coordinate of \(P\).
(b) Show that the \(y\)-coordinate of \(P\) may be expressed in the form \(k - k \ln k\), where \(k\) is a constant to be found. The point \(Q\) on \(C\) has \(x\)-coordinate 1 .
(c) Find an equation for the normal to \(C\) at \(Q\). The normal to \(C\) at \(Q\) meets \(C\) again at the point \(R\).
(d) Show that the \(x\)-coordinate of \(R\)
(i) satisfies the equation \(6 \ln x + x + \frac { 2 } { x } - 3 = 0\),
(ii) lies between 0.13 and 0.14 .
33. The function f is given by \(\mathrm { f } : x \mapsto 2 + \frac { 3 } { x + 2 } , x \in \mathbb { R } , x \neq - 2\).
(a) Express \(2 + \frac { 3 } { x + 2 }\) as a single fraction.
(b) Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
(c) Write down the domain of \(\mathrm { f } ^ { - 1 }\).
34. The function f is even and has domain \(\mathbb { R }\). For \(x \geq 0 , \mathrm { f } ( x ) = x ^ { 2 } - 4 a x\), where \(a\) is a positive constant.
(a) In the space below, sketch the curve with equation \(y = \mathrm { f } ( x )\), showing the coordinates of all the points at which the curve meets the axes.
(b) Find, in terms of \(a\), the value of \(\mathrm { f } ( 2 a )\) and the value of \(\mathrm { f } ( - 2 a )\). Given that \(a = 3\),
(c) use algebra to find the values of \(x\) for which \(\mathrm { f } ( x ) = 45\).
35. Given that \(y = \log _ { a } x , x > 0\), where \(a\) is a positive constant,
(a) (i) express \(x\) in terms of \(a\) and \(y\),
(ii) deduce that \(\ln x = y \ln a\).
(b) Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { x \ln a }\). The curve \(C\) has equation \(y = \log _ { 10 } x , x > 0\). The point \(A\) on \(C\) has \(x\)-coordinate 10 . Using the result in part (b),
(c) find an equation for the tangent to \(C\) at \(A\). The tangent to \(C\) at \(A\) crosses the \(x\)-axis at the point \(B\).
(d) Find the exact \(x\)-coordinate of \(B\).
36. (i) (a) Express ( \(12 \cos \theta - 5 \sin \theta\) ) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\).
(b) Hence solve the equation $$12 \cos \theta - 5 \sin \theta = 4$$ for \(0 < \theta < 90 ^ { \circ }\), giving your answer to 1 decimal place.
(ii) Solve $$8 \cot \theta - 3 \tan \theta = 2 ,$$ for \(0 < \theta < 90 ^ { \circ }\), giving your answer to 1 decimal place.
37. Express as a single fraction in its simplest form $$\frac { x ^ { 2 } - 8 x + 15 } { x ^ { 2 } - 9 } \times \frac { 2 x ^ { 2 } + 6 x } { ( x - 5 ) ^ { 2 } }$$ [P2 June 2004 Question 1]
38. (i) Given that \(\sin x = \frac { 3 } { 5 }\), use an appropriate double angle formula to find the exact value of \(\sec 2 x\).
(ii) Prove that $$\cot 2 x + \operatorname { cosec } 2 x \equiv \cot x , \quad \left( x \neq \frac { n \pi } { 2 } , n \in \mathrm { Z } \right)$$ [P2 June 2004 Question 2]
39. $$\mathrm { f } ( x ) = x ^ { 3 } + x ^ { 2 } - 4 x - 1$$ The equation \(\mathrm { f } ( x ) = 0\) has only one positive root, \(\alpha\).
(a) Show that \(\mathrm { f } ( x ) = 0\) can be rearranged as $$x = \sqrt { \left( \frac { 4 x + 1 } { x + 1 } \right) } , x \neq - 1$$ The iterative formula \(x _ { n + 1 } = \sqrt { \left( \frac { 4 x _ { n } + 1 } { x _ { n } + 1 } \right) }\) is used to find an approximation to \(\alpha\).
(b) Taking \(x _ { 1 } = 1\), find, to 2 decimal places, the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\).
(c) By choosing values of \(x\) in a suitable interval, prove that \(\alpha = 1.70\), correct to 2 decimal places.
(d) Write down a value of \(x _ { 1 }\) for which the iteration formula \(x _ { n + 1 } = \sqrt { \left( \frac { 4 x _ { n } + 1 } { x _ { n } + 1 } \right) }\) does not produce a valid value for \(x _ { 2 }\). Justify your answer.
40. $$\mathrm { f } ( x ) = x + \frac { \mathrm { e } ^ { x } } { 5 } , \quad x \in \mathbb { R }$$ (a) Find \(\mathrm { f } ^ { \prime } ( x )\). The curve \(C\), with equation \(y = \mathrm { f } ( x )\), crosses the \(y\)-axis at the point \(A\).
(b) Find an equation for the tangent to \(C\) at \(A\).
(c) Complete the table, giving the values of \(\sqrt { \left( x + \frac { \mathrm { e } ^ { x } } { 5 } \right) }\) to 2 decimal places.
\(x\)00.511.52
\(\sqrt { \left( x + \frac { \mathrm { e } ^ { x } } { 5 } \right) }\)0.450.91
  1. The function f is given by
$$f : x \mapsto \ln ( 3 x - 6 ) , \quad x \in \mathbb { R } , \quad x > 2 .$$ (a) Find \(\mathrm { f } ^ { - 1 } ( x )\).
(b) Write down the domain of \(\mathrm { f } ^ { - 1 }\) and the range of \(\mathrm { f } ^ { - 1 }\).
(c) Find, to 3 significant figures, the value of \(x\) for which \(\mathrm { f } ( x ) = 3\). The function g is given by $$\mathrm { g } : x \mapsto \ln | 3 x - 6 | , \quad x \in \mathbb { R } , \quad x \neq 2 .$$ (d) Sketch the graph of \(y = \mathrm { g } ( x )\).
(e) Find the exact coordinates of all the points at which the graph of \(y = \mathrm { g } ( x )\) meets the coordinate axes.
AQA C3 Q2
2 Use Simpson's rule with 5 ordinates ( 4 strips) to find an approximation to $$\int _ { 1 } ^ { 3 } \frac { 1 } { \sqrt { 1 + x ^ { 3 } } } \mathrm {~d} x$$ giving your answer to three significant figures.
AQA C3 Q5
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at ( \(0 , a\) ) and ( \(b , 0\) ).
\includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-004_817_908_479_550}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
AQA C3 Q6
6 [Figure 1, printed on the insert, is provided for use in this question.]
The curve \(y = x ^ { 3 } + 4 x - 3\) intersects the \(x\)-axis at the point \(A\) where \(x = \alpha\).
  1. Show that \(\alpha\) lies between 0.5 and 1.0.
  2. Show that the equation \(x ^ { 3 } + 4 x - 3 = 0\) can be rearranged into the form \(x = \frac { 3 - x ^ { 3 } } { 4 }\).
    (1 mark)
    1. Use the iteration \(x _ { n + 1 } = \frac { 3 - x _ { n } { } ^ { 3 } } { 4 }\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to two decimal places.
    2. The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 3 - x ^ { 3 } } { 4 }\) and \(y = x\), and the position of \(x _ { 1 }\). On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      (3 marks)
AQA C3 Q7
7
  1. The sketch shows the graph of \(y = \sin ^ { - 1 } x\).
    \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-006_819_824_456_591} Write down the coordinates of the points \(P\) and \(Q\), the end-points of the graph.
  2. Sketch the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\).
AQA C3 Q8
8 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 2 } & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { x + 2 } & \text { for real values of } x , \quad x \neq - 2 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 4\).
    1. Explain why the function f does not have an inverse.
    2. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
AQA C3 Q9
9
  1. Given that \(y = x ^ { - 2 } \ln x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 \ln x } { x ^ { 3 } }\).
  2. Using integration by parts, find \(\int x ^ { - 2 } \ln x \mathrm {~d} x\).
  3. The sketch shows the graph of \(y = x ^ { - 2 } \ln x\).
    \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-007_593_1034_696_543}
    1. Using the answer to part (a), find, in terms of e, the \(x\)-coordinate of the stationary point \(A\).
    2. The region \(R\) is bounded by the curve, the \(x\)-axis and the line \(x = 5\). Using your answer to part (b), show that the area of \(R\) is $$\frac { 1 } { 5 } ( 4 - \ln 5 )$$
AQA C3 Q10
10
    1. By writing \(\ln x\) as \(( \ln x ) \times 1\), use integration by parts to find \(\int \ln x \mathrm {~d} x\).
    2. Find \(\int ( \ln x ) ^ { 2 } \mathrm {~d} x\).
  1. Use the substitution \(u = \sqrt { x }\) to find the exact value of $$\int _ { 1 } ^ { 4 } \frac { 1 } { x + \sqrt { x } } \mathrm {~d} x$$ (7 marks)
AQA C3 2006 January Q1
1
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = \tan 3 x\).
    (2 marks)
  2. Given that \(y = \frac { 3 x + 1 } { 2 x + 1 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { ( 2 x + 1 ) ^ { 2 } }\).
    (3 marks)
AQA C3 2006 January Q2
2 Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to $$\int _ { 1 } ^ { 3 } \frac { 1 } { \sqrt { 1 + x ^ { 3 } } } \mathrm {~d} x$$ giving your answer to three significant figures.