AQA
AS Paper 1
2024
June
Q13
1 marks
13 A particle is moving in a straight line with constant acceleration a \(\mathrm { m } \mathrm { s } ^ { - 2 }\)
The particle's velocity, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), varies with time, \(t\) seconds, so that
$$v = 3 - 4 t$$
Deduce the value of \(a\)
Circle your answer.
[0pt]
[1 mark]
-4
-1
3
4
AQA
AS Paper 1
2024
June
Q14
14
Two forces, \(\mathbf { F } _ { \mathbf { 1 } } = 3 \mathbf { i } + 2 \mathbf { j }\) newtons and \(\mathbf { F } _ { \mathbf { 2 } } = \mathbf { i } - 3 \mathbf { j }\) newtons, are added together to find a resultant force, \(\mathbf { R }\) newtons.
This vector addition can be represented using a diagram.
Identify the diagram below which correctly represents this vector addition.
Tick ( ✓ ) one box.
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_497_645_762_153}
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_147_118_1110_817}
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_502_636_762_1080}
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_113_111_1110_1749}
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_508_796_1400_146}
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_499_643_1400_1078}
\includegraphics[max width=\textwidth, alt={}, center]{f4f303a2-f029-42be-93a0-046b0c81e3c0-17_111_109_1758_1749}