Questions — OCR MEI (4333 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 2009 January Q3
3 marks Moderate -0.8
3 Given that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \ln ( x - 1 )\) and \(\mathrm { g } ( x ) = 1 + \mathrm { e } ^ { 2 x }\), show that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
OCR MEI C3 2009 January Q4
5 marks Moderate -0.3
4 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR MEI C3 2009 January Q5
8 marks Moderate -0.8
5
  1. State the period of the function \(\mathrm { f } ( x ) = 1 + \cos 2 x\), where \(x\) is in degrees.
  2. State a sequence of two geometrical transformations which maps the curve \(y = \cos x\) onto the curve \(y = \mathrm { f } ( x )\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
OCR MEI C3 2009 January Q6
3 marks Moderate -0.8
6
  1. Disprove the following statement. $$\text { 'If } p > q \text {, then } \frac { 1 } { p } < \frac { 1 } { q } \text {. }$$
  2. State a condition on \(p\) and \(q\) so that the statement is true.
OCR MEI C3 2009 January Q7
7 marks Standard +0.3
7 The variables \(x\) and \(y\) satisfy the equation \(x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \left( \frac { y } { x } \right) ^ { \frac { 1 } { 3 } }\). Both \(x\) and \(y\) are functions of \(t\).
  2. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(x = 1 , y = 8\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6\). Section B (36 marks)
OCR MEI C3 2009 January Q8
18 marks Standard +0.3
8 Fig. 8 shows the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\). P is the point on this curve with \(x\)-coordinate 1 , and R is the point \(\left( 0 , - \frac { 7 } { 8 } \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-3_1022_995_479_575} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the gradient of PR.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that PR is a tangent to the curve.
  3. Find the exact coordinates of the turning point Q .
  4. Differentiate \(x \ln x - x\). Hence, or otherwise, show that the area of the region enclosed by the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\) is \(\frac { 59 } { 24 } - \frac { 1 } { 4 } \ln 2\).
OCR MEI C3 2009 January Q9
18 marks Standard +0.3
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } }\).
The curve has asymptotes \(x = 0\) and \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-4_655_800_431_669} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find \(a\). Hence write down the domain of the function.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 1 } { \left( 2 x - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the coordinates of the turning point of the curve, and write down the range of the function. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  3. (A) Show algebraically that \(\mathrm { g } ( x )\) is an even function.
    (B) Show that \(\mathrm { g } ( x - 1 ) = \mathrm { f } ( x )\).
    (C) Hence prove that the curve \(y = \mathrm { f } ( x )\) is symmetrical, and state its line of symmetry.
OCR MEI C3 2010 January Q1
4 marks Easy -1.2
1 Solve the equation \(\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } = 0\).
OCR MEI C3 2010 January Q2
6 marks Moderate -0.3
2 The temperature \(T\) in degrees Celsius of water in a glass \(t\) minutes after boiling is modelled by the equation \(T = 20 + b \mathrm { e } ^ { - k t }\), where \(b\) and \(k\) are constants. Initially the temperature is \(100 ^ { \circ } \mathrm { C }\), and after 5 minutes the temperature is \(60 ^ { \circ } \mathrm { C }\).
  1. Find \(b\) and \(k\).
  2. Find at what time the temperature reaches \(50 ^ { \circ } \mathrm { C }\).
OCR MEI C3 2010 January Q3
7 marks Moderate -0.3
3
  1. Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
  2. Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).
OCR MEI C3 2010 January Q4
8 marks Moderate -0.8
4 Evaluate the following integrals, giving your answers in exact form.
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\).
OCR MEI C3 2010 January Q5
4 marks Moderate -0.8
5 The curves in parts (i) and (ii) have equations of the form \(y = a + b \sin c x\), where \(a , b\) and \(c\) are constants. For each curve, find the values of \(a , b\) and \(c\).
  1. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_455_679_1800_365}
  2. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_374_679_2311_365}
OCR MEI C3 2010 January Q6
4 marks Moderate -0.3
6 Write down the conditions for \(\mathrm { f } ( x )\) to be an odd function and for \(\mathrm { g } ( x )\) to be an even function.
Hence prove that, if \(\mathrm { f } ( x )\) is odd and \(\mathrm { g } ( x )\) is even, then the composite function \(\mathrm { gf } ( x )\) is even.
OCR MEI C3 2010 January Q7
3 marks Standard +0.3
7 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).] Section B (36 marks)
OCR MEI C3 2010 January Q8
17 marks Standard +0.3
8 Fig. 8 shows part of the curve \(y = x \cos 3 x\).
The curve crosses the \(x\)-axis at \(\mathrm { O } , \mathrm { P }\) and Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-3_551_1189_925_479} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P and Q .
  2. Find the exact gradient of the curve at the point P . Show also that the turning points of the curve occur when \(x \tan 3 x = \frac { 1 } { 3 }\).
  3. Find the area of the region enclosed by the curve and the \(x\)-axis between O and P , giving your answer in exact form.
OCR MEI C3 2010 January Q9
19 marks Standard +0.3
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } + 1 }\) for the domain \(0 \leqslant x \leqslant 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-4_974_1211_358_466} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 6 x } { \left( x ^ { 2 } + 1 \right) ^ { 2 } }\), and hence that \(\mathrm { f } ( x )\) is an increasing function for \(x > 0\).
  2. Find the range of \(\mathrm { f } ( x )\).
  3. Given that \(\mathrm { f } ^ { \prime \prime } ( x ) = \frac { 6 - 18 x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 3 } }\), find the maximum value of \(\mathrm { f } ^ { \prime } ( x )\). The function \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
  4. Write down the domain and range of \(\mathrm { g } ( x )\). Add a sketch of the curve \(y = \mathrm { g } ( x )\) to a copy of Fig. 9 .
  5. Show that \(\mathrm { g } ( x ) = \sqrt { \frac { x + 1 } { 2 - x } }\).
OCR MEI C3 2011 January Q1
4 marks Moderate -0.8
1 Given that \(y = \sqrt [ 3 ] { 1 + x ^ { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
OCR MEI C3 2011 January Q2
4 marks Easy -1.2
2 Solve the inequality \(| 2 x + 1 | \geqslant 4\).
OCR MEI C3 2011 January Q3
5 marks Moderate -0.5
3 The area of a circular stain is growing at a rate of \(1 \mathrm {~mm} ^ { 2 }\) per second. Find the rate of increase of its radius at an instant when its radius is 2 mm .
OCR MEI C3 2011 January Q4
3 marks Easy -1.2
4 Use the triangle in Fig. 4 to prove that \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta = 1\). For what values of \(\theta\) is this proof valid? \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-2_362_606_906_772} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
OCR MEI C3 2011 January Q5
8 marks Moderate -0.3
5
  1. On a single set of axes, sketch the curves \(y = \mathrm { e } ^ { x } - 1\) and \(y = 2 \mathrm { e } ^ { - x }\).
  2. Find the exact coordinates of the point of intersection of these curves.
OCR MEI C3 2011 January Q7
8 marks Moderate -0.3
7 Fig. 7 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + 2 \arctan x , x \in \mathbb { R }\). The scales on the \(x\) - and \(y\)-axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-3_859_849_386_648} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the range of f , giving your answer in terms of \(\pi\).
  2. Find \(\mathrm { f } ^ { - 1 } ( x )\), and add a sketch of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) to the copy of Fig. 7. Section B (36 Marks)
OCR MEI C3 2011 January Q8
18 marks Standard +0.8
8
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-4_830_809_902_667} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
OCR MEI C3 2011 January Q9
18 marks Moderate -0.3
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \cos ^ { 2 } x } , - \frac { 1 } { 2 } \pi < x < \frac { 1 } { 2 } \pi\), together with its asymptotes \(x = \frac { 1 } { 2 } \pi\) and \(x = - \frac { 1 } { 2 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9857ad89-b315-4cd6-8d8d-26a509ca52a8-5_917_1395_413_374} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Use the quotient rule to show that the derivative of \(\frac { \sin x } { \cos x }\) is \(\frac { 1 } { \cos ^ { 2 } x }\).
  2. Find the area bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 4 } \pi\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \mathrm { f } \left( x + \frac { 1 } { 4 } \pi \right)\).
  3. Verify that the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) cross at ( 0,1 ).
  4. State a sequence of two transformations such that the curve \(y = \mathrm { f } ( x )\) is mapped to the curve \(y = \mathrm { g } ( x )\). On the copy of Fig. 9, sketch the curve \(y = \mathrm { g } ( x )\), indicating clearly the coordinates of the minimum point and the equations of the asymptotes to the curve.
  5. Use your result from part (ii) to write down the area bounded by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = - \frac { 1 } { 4 } \pi\). RECOGNISING ACHIEVEMENT
OCR MEI C3 2012 January Q1
3 marks Moderate -0.3
1 Differentiate \(x ^ { 2 } \tan 2 x\).