OCR MEI C3 2010 January — Question 9

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
Year2010
SessionJanuary
TopicProduct & Quotient Rules

9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 2 x ^ { 2 } - 1 } { x ^ { 2 } + 1 }\) for the domain \(0 \leqslant x \leqslant 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-4_974_1211_358_466} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 6 x } { \left( x ^ { 2 } + 1 \right) ^ { 2 } }\), and hence that \(\mathrm { f } ( x )\) is an increasing function for \(x > 0\).
  2. Find the range of \(\mathrm { f } ( x )\).
  3. Given that \(\mathrm { f } ^ { \prime \prime } ( x ) = \frac { 6 - 18 x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 3 } }\), find the maximum value of \(\mathrm { f } ^ { \prime } ( x )\). The function \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
  4. Write down the domain and range of \(\mathrm { g } ( x )\). Add a sketch of the curve \(y = \mathrm { g } ( x )\) to a copy of Fig. 9 .
  5. Show that \(\mathrm { g } ( x ) = \sqrt { \frac { x + 1 } { 2 - x } }\).