Questions — OCR MEI (4333 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C4 Q6
6 marks Standard +0.3
6 Fig. 3 shows the curve \(y = \ln x\) and part of the line \(y = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-4_244_548_1346_768} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} The shaded region is rotated through \(360 ^ { \circ }\) about the \(y\)-axis.
  1. Show that the volume of the solid of revolution formed is given by \(\int _ { 0 } ^ { 2 } \pi \mathrm { e } ^ { 2 y } \mathrm {~d} y\).
  2. Evaluate this, leaving your answer in an exact form.
OCR MEI C4 Q7
7 marks Standard +0.3
7
  1. Show that \(\int x \mathrm { e } ^ { - 2 x } \mathrm {~d} x = - \frac { 1 } { 4 } \mathrm { e } ^ { - 2 x } ( 1 + 2 x ) + c\). A vase is made in the shape of the volume of revolution of the curve \(y = x ^ { 1 / 2 } \mathrm { e } ^ { - x }\) about the \(x\)-axis between \(x = 0\) and \(x = 2\) (see Fig. 5). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-5_718_751_638_654} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  2. Show that this volume of revolution is \(\frac { 1 } { 4 } \pi \left( 1 \frac { 5 } { \mathrm { e } ^ { 4 } } \right)\).
OCR MEI C4 Q8
5 marks Standard +0.3
8 Fig. 4 shows a sketch of the region enclosed by the curve . \(\mathrm { J } 1 + \mathrm { e } - 2 \mathrm { x }\), the x -axis, the y -axis and the line \(\boldsymbol { x } = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-6_442_628_314_745} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the volume of the solid generated when this region is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { x }\)-axis. Give your answer in an exact form.
OCR MEI C4 Q1
18 marks Standard +0.3
1 Fig. 8 shows a cross-section of a car headlight whose inside reflective surface is modelled, in suitable units, by the curve $$x = 2 t ^ { 2 } , y = 4 t , \quad - \sqrt { 2 } \leqslant t \leqslant \sqrt { 2 } .$$ \(\mathrm { P } \left( 2 t ^ { 2 } , 4 t \right)\) is a point on the curve with parameter \(t\). TS is the tangent to the curve at P , and PR is the line through P parallel to the \(x\)-axis. Q is the point \(( 2,0 )\). The angles that PS and QP make with the positive \(x\)-direction are \(\theta\) and \(\phi\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-1_962_1248_673_420} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. By considering the gradient of the tangent TS, show that \(\tan \theta = \frac { 1 } { t }\).
  2. Find the gradient of the line QP in terms of \(t\). Hence show that \(\phi = 2 \theta\), and that angle TPQ is equal to \(\theta\).
    [0pt] [The above result shows that if a lamp bulb is placed at Q , then the light from the bulb is reflected to produce a parallel beam of light.] The inside surface of the headlight has the shape produced by rotating the curve about the \(x\)-axis.
  3. Show that the curve has cartesian equation \(y ^ { 2 } = 8 x\). Hence find the volume of revolution of the curve, giving your answer as a multiple of \(\pi\).
OCR MEI C4 Q2
5 marks Standard +0.3
2 Fig. 3 shows part of the curve \(y = 1 + x ^ { 2 }\), together with the line \(y = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-2_558_716_302_687} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} The region enclosed by the curve, the \(y\)-axis and the line \(y = 2\) is rotated through \(360 ^ { \circ }\) about the \(y\)-axis. Find the volume of the solid generated, giving your answer in terms of \(\pi\).
OCR MEI C4 Q3
18 marks Standard +0.8
3 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-3_505_585_598_766} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object.
OCR MEI C4 Q4
8 marks Moderate -0.3
4 Fig. 2 shows the curve \(y = \sqrt { 1 + x ^ { 2 } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-4_572_939_551_638} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. The following table gives some values of \(x\) and \(y\).
    \(x\)00.250.50.751
    \(y\)11.03081.251.4142
    Find the missing value of \(y\), giving your answer correct to 4 decimal places. Hence show that, using the trapezium rule with four strips, the shaded area is approximately 1.151 square units.
  2. Jenny uses a trapezium rule with 8 strips, and obtains a value of 1.158 square units. Explain why she must have made a mistake.
  3. The shaded area is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact volume of the solid of revolution formed.
OCR MEI C4 Q5
8 marks Standard +0.3
5 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-5_657_732_375_667} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
OCR MEI C4 Q6
19 marks Standard +0.8
6 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the \(x\)-axis of the curve with parametric equations $$x = 2 + 2 \sin \theta , \quad y = 2 \cos \theta + \sin 2 \theta , \quad ( 0 \leqslant \theta \leqslant 2 \pi ) .$$ The curve crosses the \(x\)-axis at the point \(\mathrm { A } ( 4,0 )\). B and C are maximum and minimum points on the curve. Units on the axes are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-6_812_801_517_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 6 } \pi\), and find the exact coordinates of B . Hence find the maximum width BC of the balloon.
  3. (A) Show that \(y = x \cos \theta\).
    (B) Find \(\sin \theta\) in terms of \(x\) and show that \(\cos ^ { 2 } \theta = x - \frac { 1 } { 4 } x ^ { 2 }\).
    (C) Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }\).
  4. Find the volume of the balloon.
OCR MEI C4 Q1
8 marks Standard +0.3
1 You are given that \(\mathrm { f } ( x ) = \cos x + \lambda \sin x\) where \(\lambda\) is a positive constant.
  1. Express \(\mathrm { f } ( x )\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving \(R\) and \(\alpha\) in terms of \(\lambda\).
  2. Given that the maximum value (as \(x\) varies) of \(\mathrm { f } ( x )\) is 2 , find \(R , \lambda\) and \(\alpha\), giving your answers in exact form.
OCR MEI C4 Q2
18 marks Challenging +1.2
2 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-1_505_583_1147_781} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object.
OCR MEI C4 Q3
7 marks Moderate -0.3
3 A curve has parametric equations $$x = 2 \sin \theta , \quad y = \cos 2 \theta$$
  1. Find the exact coordinates and the gradient of the curve at the point with parameter \(\theta = \frac { 1 } { 3 } \pi\).
  2. Find \(y\) in terms of \(x\).
OCR MEI C4 Q4
5 marks Standard +0.3
4 The parametric equations of a curve are $$x = \cos 2 \theta , \quad y = \sin \theta \cos \theta \quad \text { for } 0 \leqslant \theta < \pi$$ Show that the cartesian equation of the curve is \(x ^ { 2 } + 4 y ^ { 2 } = 1\).
Sketch the curve.
OCR MEI C4 Q5
18 marks Standard +0.3
5 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-3_598_1443_598_385} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR MEI C4 Q6
7 marks Standard +0.3
6 A curve has parametric equations $$x = a t ^ { 3 } , \quad y = \frac { a } { 1 + t ^ { 2 } }$$ where \(a\) is a constant.
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { - 2 } { 3 t \left( 1 + t ^ { 2 } \right) ^ { 2 } }\).
Hence find the gradient of the curve at the point \(\left( a , \frac { 1 } { 2 } a \right)\).
OCR MEI C4 Q7
5 marks Moderate -0.8
7 A curve has parametric equations \(x = 1 + u ^ { 2 } , y = 2 u ^ { 3 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\).
  2. Hence find the gradient of the curve at the point with coordinates \(( 5,16 )\).
OCR MEI C4 Q8
4 marks Moderate -0.8
8 A curve is defined by parametric equations $$x = \frac { 1 } { t } - 1 , y = \frac { 2 + t } { 1 + t }$$ Show that the cartesian equation of the curve is \(y = \frac { 3 + 2 x } { 2 + x }\).
OCR MEI C4 Q2
18 marks Challenging +1.2
2 Fig. 6 shows the arch ABCD of a bridge. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0c0a2fe7-9e69-470a-af2e-fa5fd41e4a27-2_378_1630_397_132} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} The section from \(B\) to \(C\) is part of the curve \(O B C E\) with parametric equations $$x = a ( \theta - \sin \theta ) , y = a ( 1 - \cos \theta ) \text { for } 0 \leqslant \theta \leqslant 2 \pi \text {, }$$ where \(a\) is a constant.
  1. Find, in terms of \(a\),
    (A) the length of the straight line OE,
    (B) the maximum height of the arch.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). The straight line sections AB and CD are inclined at \(30 ^ { \circ }\) to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the \(x\)-axis. BF is parallel to the \(y\)-axis.
  3. Show that at the point B the parameter \(\theta\) satisfies the equation $$\sin \theta = \frac { 1 } { \sqrt { 3 } } ( 1 \quad \cos \theta ) .$$ Verify that \(\theta = \frac { 2 } { 3 } \pi\) is a solution of this equation.
    Hence show that \(\mathrm { BF } = \frac { 3 } { 2 } a\), and find OF in terms of \(a\), giving your answer exactly.
  4. Find BC and AF in terms of \(a\). Given that the straight line distance AD is 20 metres, calculate the value of \(a\).
OCR MEI C4 Q3
8 marks Standard +0.3
3 A curve has carlesian equation \(\mathrm { y } ^ { 2 } - \mathrm { x } _ { 2 } = 4\).
  1. Verify that $$\boldsymbol { x } = \boldsymbol { t } - - ^ { 1 } \quad \boldsymbol { t ^ { \prime } } \quad \boldsymbol { y } = \boldsymbol { t } + \frac { 1 } { \boldsymbol { t } ^ { \prime } }$$ are parametric equations of the curve.
    (u) Show lhat \(\left. \underset { d x } { \mathbf { d y } } = \frac { ( t - I ) ( r } { 12 + 1 } + 1 \right)\). Hence find the coordinates of the staionary points of the curve.
OCR MEI C4 Q4
7 marks Moderate -0.3
4 The parametric equations of a curve are $$x = \sin \theta , \quad y = \sin 2 \theta , \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi$$
  1. Find the exact value of the gradient of the curve at the point where \(\theta = \frac { 1 } { 6 } \pi\).
  2. Show that the cartesian equation of the curve is \(y ^ { 2 } = 4 x ^ { 2 } - 4 x ^ { 4 }\).
OCR MEI C4 Q5
5 marks Moderate -0.3
5 A curve is defined parametrically by the equations $$x = \frac { 1 } { 1 + t } , \quad y = \frac { 1 - t } { 1 + 2 t }$$ Find \(t\) in terms of \(x\). Hence find the cartesian equation of the curve, giving your answer as simply as possible.
OCR MEI C4 Q6
8 marks Standard +0.3
6 A curve has parametric equations $$x = \mathrm { e } ^ { 2 t } , \quad y = \frac { 2 t } { 1 + t }$$
  1. Find the gradient of the curve at the point where \(t = 0\).
  2. Find \(y\) in terms of \(x\).
OCR MEI C4 Q1
19 marks Standard +0.8
1 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the \(x\)-axis of the curve with parametric equations $$x = 2 + 2 \sin \theta , \quad y = 2 \cos \theta + \sin 2 \theta , \quad ( 0 \leqslant \theta \leqslant 2 \pi ) .$$ The curve crosses the \(x\)-axis at the point \(\mathrm { A } ( 4,0 )\). B and C are maximum and minimum points on the curve. Units on the axes are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-1_812_809_517_704} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 6 } \pi\), and find the exact coordinates of B . Hence find the maximum width BC of the balloon.
  3. (A) Show that \(y = x \cos \theta\).
    (B) Find \(\sin \theta\) in terms of \(x\) and show that \(\cos ^ { 2 } \theta = x - \frac { 1 } { 4 } x ^ { 2 }\).
    (C) Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }\).
  4. Find the volume of the balloon.
OCR MEI C4 Q2
18 marks Moderate -0.3
2 A curve has equation $$x ^ { 2 } + 4 y ^ { 2 } = k ^ { 2 } ,$$ where \(k\) is a positive constant.
  1. Verify that $$x = k \cos \theta , \quad y = \frac { 1 } { 2 } k \sin \theta ,$$ are parametric equations for the curve.
  2. Hence or otherwise show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { x } { 4 y }\).
  3. Fig. 8 illustrates the curve for a particular value of \(k\). Write down this value of \(k\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1601927c-74d7-4cc2-a7f2-2c2a2e8c2c4c-2_658_1070_861_567} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  4. Copy Fig. 8 and on the same axes sketch the curves for \(k = 1 , k = 3\) and \(k = 4\). On a map, the curves represent the contours of a mountain. A stream flows down the mountain. Its path on the map is always at right angles to the contour it is crossing.
  5. Explain why the path of the stream is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 y } { x } .$$
  6. Solve this differential equation. Given that the path of the stream passes through the point \(( 2,1 )\), show that its equation is \(y = \frac { x ^ { 4 } } { 16 }\).
OCR MEI C4 Q3
5 marks Moderate -0.8
3 A curve is defined parametrically by the equations $$x = t - \ln t , \quad y = t + \ln t \quad ( t > 0 )$$ Find the gradient of the curve at the point where \(t = 2\).