OCR MEI C4 — Question 2

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicParametric equations

2 Fig. 6 shows the arch ABCD of a bridge. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0c0a2fe7-9e69-470a-af2e-fa5fd41e4a27-2_378_1630_397_132} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} The section from \(B\) to \(C\) is part of the curve \(O B C E\) with parametric equations $$x = a ( \theta - \sin \theta ) , y = a ( 1 - \cos \theta ) \text { for } 0 \leqslant \theta \leqslant 2 \pi \text {, }$$ where \(a\) is a constant.
  1. Find, in terms of \(a\),
    (A) the length of the straight line OE,
    (B) the maximum height of the arch.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). The straight line sections AB and CD are inclined at \(30 ^ { \circ }\) to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the \(x\)-axis. BF is parallel to the \(y\)-axis.
  3. Show that at the point B the parameter \(\theta\) satisfies the equation $$\sin \theta = \frac { 1 } { \sqrt { 3 } } ( 1 \quad \cos \theta ) .$$ Verify that \(\theta = \frac { 2 } { 3 } \pi\) is a solution of this equation.
    Hence show that \(\mathrm { BF } = \frac { 3 } { 2 } a\), and find OF in terms of \(a\), giving your answer exactly.
  4. Find BC and AF in terms of \(a\). Given that the straight line distance AD is 20 metres, calculate the value of \(a\).