Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C1 Q13
13 Make \(v\) the subject of the formula \(E = \frac { 1 } { 2 } m v ^ { 2 }\).
OCR MEI C1 Q14
14 Make \(t\) the subject of the formula \(s = \frac { 1 } { 2 } a t ^ { 2 }\).
OCR MEI C1 Q15
15
  1. Simplify \(\sqrt { 98 } \quad \sqrt { 50 }\).
  2. Express \(\frac { 6 \sqrt { 5 } } { 2 + \sqrt { 5 } }\) in the form \(a + b \sqrt { 5 }\), where \(a\) and \(b\) are integers.
OCR MEI C1 Q16
16 The volume of a cone is given by the formula \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\). Make \(r\) the subject of this formula.
OCR MEI C1 Q17
17
  1. Simplify \(5 \sqrt { 8 } + 4 \sqrt { 50 }\). Express your answer in the form \(a \sqrt { b }\), where \(a\) and \(b\) are integers and \(b\) is as small as possible.
  2. Express \(\frac { \sqrt { 3 } } { 6 \sqrt { 3 } }\) in the form \(p + q \sqrt { 3 }\), where \(p\) and \(q\) are rational.
OCR MEI C1 Q2
2 Fig. 10 shows a sketch of a circle with centre \(\mathrm { C } ( 4,2 )\). The circle intersects the \(x\)-axis at \(\mathrm { A } ( 1,0 )\) and at B . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{55e2d4f5-c84d-4577-988e-96071a220d60-2_689_811_430_662} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure}
  1. Write down the coordinates of B .
  2. Find the radius of the circle and hence write down the equation of the circle.
  3. AD is a diameter of the circle. Find the coordinates of D .
  4. Find the equation of the tangent to the circle at D . Give your answer in the form \(y = a x + b\).
OCR MEI C1 Q3
3 The circle \(( x - 3 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 20\) has centre C.
  1. Write down the radius of the circle and the coordinates of C .
  2. Find the coordinates of the intersections of the circle with the \(x\) - and \(y\)-axes.
  3. Show that the points \(\mathrm { A } ( 1,6 )\) and \(\mathrm { B } ( 7,4 )\) lie on the circle. Find the coordinates of the midpoint of AB . Find also the distance of the chord AB from the centre of the circle.
OCR MEI C1 Q4
4 A circle has diameter \(d\), circumference \(C\), and area \(A\). Starting with the standard formulae for a circle, show that \(C d = k A\), finding the numerical value of \(k\).
OCR MEI C1 Q5
5 A circle has equation \(( x - 2 ) ^ { 2 } + y ^ { 2 } = 20\).
  1. Write down the radius of the circle and the coordinates of its centre.
  2. Find the points of intersection of the circle with the \(y\)-axis and sketch the circle.
  3. Show that, where the line \(y = 2 x + k\) intersects the circle, $$5 x ^ { 2 } + ( 4 k - 4 ) x + k ^ { 2 } - 16 = 0$$
  4. Hence find the values of \(k\) for which the line \(y = 2 x + k\) is a tangent to the circle.
OCR MEI C1 Q3
3 The curve with equation \(y = \frac { 1 } { 5 } x ( 10 - x )\) is used to model the arch of a bridge over a road, where \(x\) and \(y\) are distances in metres, with the origin as shown in Fig. 12.1. The \(x\)-axis represents the road surface. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fed65420-9ef9-41d6-a58f-3b0f801d6225-3_520_873_478_675} \captionsetup{labelformat=empty} \caption{Fig. 12.1}
\end{figure}
  1. State the value of \(x\) at A , where the arch meets the road.
  2. Using symmetry, or otherwise, state the value of \(x\) at the maximum point B of the graph. Hence find the height of the arch.
  3. Fig. 12.2 shows a lorry which is 4 m high and 3 m wide, with its cross-section modelled as a rectangle. Find the value of \(d\) when the lorry is in the centre of the road. Hence show that the lorry can pass through this arch. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{fed65420-9ef9-41d6-a58f-3b0f801d6225-3_528_870_1558_717} \captionsetup{labelformat=empty} \caption{Fig. 12.2}
    \end{figure}
  4. Another lorry, also modelled as having a rectangular cross-section, has height 4.5 m and just touches the arch when it is in the centre of the road. Find the width of this lorry, giving your answer in surd form.
OCR MEI C1 Q4
4 A circle has equation \(( x - 5 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 20\).
  1. State the coordinates of the centre and the radius of this circle.
  2. State, with a reason, whether or not this circle intersects the \(y\)-axis.
  3. Find the equation of the line parallel to the line \(y = 2 x\) that passes through the centre of the circle.
  4. Show that the line \(y = 2 x + 2\) is a tangent to the circle. State the coordinates of the point of contact.
OCR MEI C1 Q2
2 A circle has equation \(x ^ { 2 } + y ^ { 2 } - 8 x - 4 y = 9\).
  1. Show that the centre of this circle is \(C ( 4,2 )\) and find the radius of the circle.
  2. Show that the origin lies inside the circle.
  3. Show that AB is a diameter of the circle, where A has coordinates ( 2,7 ) and B has coordinates \(( 6 , - 3 )\).
  4. Find the equation of the tangent to the circle at A . Give your answer in the form \(y = m x + c\).
OCR MEI C1 Q3
3 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{50cfc73d-850e-4a9b-b088-cc9741b66ffb-2_445_617_1008_741} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Not to scale A circle has centre \(\mathrm { C } ( 1,3 )\) and passes through the point \(\mathrm { A } ( 3,7 )\) as shown in Fig. 11.
  1. Show that the equation of the tangent at A is \(x + 2 y = 17\).
  2. The line with equation \(y = 2 x - 9\) intersects this tangent at the point T . Find the coordinates of T .
  3. The equation of the circle is \(( x - 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 } = 20\). Show that the line with equation \(y = 2 x - 9\) is a tangent to the circle. Give the coordinates of the point where this tangent touches the circle.
OCR MEI C1 Q1
1 Find the coordinates of the points of intersection of the circle \(x ^ { 2 } + y ^ { 2 } = 25\) and the line \(y = 3 x\). Give your answers in surd form.
\(2 \mathrm {~A} ( 9,8 ) , \mathrm { B } ( 5,0 )\) an \(\mathrm { C } ( 3,1 )\) are three points.
  1. Show that AB and BC are perpendicular.
  2. Find the equation of the circle with AC as diameter. You need not simplify your answer. Show that B lies on this circle.
  3. BD is a diameter of the circle. Find the coordinates of D .
OCR MEI C1 Q3
3 A circle has equation \(x ^ { 2 } + y ^ { 2 } = 45\).
  1. State the centre and radius of this circle.
  2. The circle intersects the line with equation \(x + y = 3\) at two points, A and B . Find algebraically the coordinates of A and B . Show that the distance AB is \(\sqrt { 162 }\).
OCR MEI C1 Q4
4 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12a2563e-fce4-4c82-84aa-96603a50d6ad-2_520_1115_339_565} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Fig. 11 shows the line through the points \(\mathrm { A } ( - 1,3 )\) and \(\mathrm { B } ( 5,1 )\).
  1. Find the equation of the line through \(\mathbf { A }\) and \(\mathbf { B }\).
  2. Show that the area of the triangle bounded by the axes and the line through A and B is \(\frac { 32 } { 3 }\) square units.
  3. Show that the equation of the perpendicular bisector of AB is \(y = 3 x - 4\).
  4. A circle passing through A and B has its centre on the line \(x = 3\). Find the centre of the circle and hence find the radius and equation of the circle.
OCR MEI C1 Q5
5
  1. Points A and B have coordinates \(( - 2,1 )\) and \(( 3,4 )\) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as \(5 x + 3 y = 10\).
  2. Points C and D have coordinates \(( - 5,4 )\) and \(( 3,6 )\) respectively. The line through C and D has equation \(4 y = x + 21\). The point E is the intersection of CD and the perpendicular bisector of AB . Find the coordinates of point E .
  3. Find the equation of the circle with centre E which passes through A and B . Show also that CD is a diameter of this circle.
OCR MEI C1 Q6
6 The points \(\mathrm { A } ( - 1,6 ) , \mathrm { B } ( 1,0 )\) and \(\mathrm { C } ( 13,4 )\) are joined by straight lines.
  1. Prove that the lines AB and BC are perpendicular.
  2. Find the area of triangle ABC .
  3. A circle passes through the points A , B and C . Justify the statement that AC is a diameter of this circle. Find the equation of this circle.
  4. Find the coordinates of the point on this circle that is furthest from \(B\).
OCR MEI C1 Q1
1 A line \(L\) is parallel to \(y = 4 x + 5\) and passes through the point \(( - 1,6 )\). Find the equation of the line \(L\) in the form \(y = a x + b\). Find also the coordinates of its intersections with the axes.
OCR MEI C1 Q2
2 Find the coordinates of the point of intersection of the lines \(y = 5 x - 2\) and \(x + 3 y = 8\).
OCR MEI C1 Q3
3 A is the point \(( 1,5 )\) and \(B\) is the point \(( 6 , - 1 )\). \(M\) is the midpoint of \(A B\). Determine whether the line with equation \(y = 2 x - 5\) passes through M.
OCR MEI C1 Q4
4 Find the equation of the line which is perpendicular to the line \(y = 2 x - 5\) and which passes through the point \(( 4,1 )\). Give your answer in the form \(y = a x + b\).
OCR MEI C1 Q6
6 Find the equation of the line with gradient - 2 which passes through the point \(( 3,1 )\). Give your answer in the form \(y = a x + b\). Find also the points of intersection of this line with the axes.
OCR MEI C1 Q7
7 Find the set of values of \(k\) for which the graph of \(y = x ^ { 2 } + 2 k x + 5\) does not intersect the \(x\)-axis.
OCR MEI C1 Q8
8 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d2142d2d-661b-4340-893f-f97f828c6855-2_447_763_602_690} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure} Fig. 10 is a sketch of quadrilateral ABCD with vertices \(\mathrm { A } ( 1,5 ) , \mathrm { B } ( - 1,1 ) , \mathrm { C } ( 3 , - 1 )\) and \(\mathrm { D } ( 11,5 )\).
  1. Show that \(\mathrm { AB } = \mathrm { BC }\).
  2. Show that the diagonals AC and BD are perpendicular.
  3. Find the midpoint of AC . Show that BD bisects AC but AC does not bisect BD .