Questions — OCR MEI D1 (128 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI D1 2013 June Q5
5 If the \(j\) th number in the list is bigger than the \(( j + 1 )\) th, then swap them.
OCR MEI D1 2013 June Q6
6 Let the new value of \(j\) be \(j + 1\).
OCR MEI D1 2013 June Q7
7 Let the new value of \(i\) be \(i + 1\).
  1. Apply the sorting algorithm to the list of numbers shown below. Record in the table provided the state of the list after each pass. Record the number of comparisons and the number of swaps that you make in each pass. (The result of the first pass has already been recorded.) List: \(\begin{array} { l l l l l l } 9 & 11 & 7 & 3 & 13 & 5 \end{array}\)
  2. Suppose now that the list is split into two sublists, \(\{ 9,11,7 \}\) and \(\{ 3,13,5 \}\). The sorting algorithm is adapted to apply to three numbers, and is applied to each sublist separately. This gives \(\{ 7,9,11 \}\) and \(\{ 3,5,13 \}\). How many comparisons and swaps does this need?
  3. How many further swaps would the original algorithm need to sort the revised list \(\{ 7,9,11,3,5,13 \}\) into increasing order? 3 The network below represents a number of villages together with connecting roads. The numbers on the arcs represent distances (in miles).
    \includegraphics[max width=\textwidth, alt={}, center]{e528b905-7419-44b6-b700-4c04ad96c816-3_684_785_1612_625}
  4. Use Dijkstra's algorithm to find the shortest routes from A to each of the other villages. Give these shortest routes and the corresponding distances. Traffic in the area travels at 30 mph . An accident delays all traffic passing through C by 20 minutes.
  5. Describe how the network can be adapted and used to find the fastest journey time from A to F .