Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q9
9 Given that \(\arcsin x = \frac { 1 } { 6 } \pi\), find \(x\). Find \(\arccos x\) in terms of \(\pi\).
OCR MEI C3 Q1
1 Find the exact value of \(\int ^ { 2 } x ^ { 3 } \ln x \mathrm {~d} x\).
OCR MEI C3 Q2
2 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93ee09be-f014-4dd7-a8da-8646837b17a5-1_471_674_761_719} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show algebraically that \(\mathrm { f } ( x )\) is an odd function. Interpret this result geometrically.
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 } { \left( 2 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the exact gradient of the curve at the origin.
  3. Find the exact area of the region bounded by the curve, the \(x\)-axis and the line \(x = 1\).
  4. \(( A )\) Show that if \(y = \frac { x } { \sqrt { 2 + x ^ { 2 } } }\), then \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\).
    (B) Differentiate \(\frac { 1 } { y ^ { 2 } } = \frac { 2 } { x ^ { 2 } } + 1\) implicitly to show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 y ^ { 3 } } { x ^ { 3 } }\). Explain why this expression cannot be used to find the gradient of the curve at the origin.
OCR MEI C3 Q3
3 Evaluate \(\int _ { 0 } ^ { 3 } x ( x + 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer as an exact fraction.
OCR MEI C3 Q4
5 marks
4 Show that \(\int _ { 0 } ^ { \frac { \pi } { 2 } } x \cos \frac { 1 } { 2 } x \mathrm {~d} x = \frac { \sqrt { 2 } } { 2 } \pi + 2 \sqrt { 2 } - 4\).
[0pt] [5]
OCR MEI C3 Q5
5 Fig. 8 shows the curve \(y = \frac { x } { \sqrt { x - 2 } }\), together with the lines \(y = x\) and \(x = 11\). The curve meets these lines at P and Q respectively. R is the point \(( 11,11 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{93ee09be-f014-4dd7-a8da-8646837b17a5-2_606_732_867_710} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the \(x\)-coordinate of P is 3 .
  2. Show that, for the curve, \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 4 } { 2 ( x - 2 ) ^ { \frac { 3 } { 2 } } }\). Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about \(y = x\).
  3. Using the substitution \(u = x - 2\), show that \(\int _ { 3 } ^ { 11 } \frac { x } { \sqrt { x - 2 } } \mathrm {~d} x = 25 \frac { 1 } { 3 }\). Hence find the area of the region PQR bounded by the curve and the lines \(y = x\) and \(x = 11\).
OCR MEI C3 Q1
1 Fig. 8 shows a sketch of part of the curve \(y = x \sin 2 x\), where \(x\) is in radians.
The curve crosses the \(x\)-axis at the point P . The tangent to the curve at P crosses the \(y\)-axis at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{35646966-3747-4f1d-bf94-60e9e3130afe-1_706_920_489_606} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that the \(x\)-coordinates of the turning points of the curve satisfy the equation \(\tan 2 x + 2 x = 0\).
  2. Find, in terms of \(\pi\), the \(x\)-coordinate of the point P . Show that the tangent PQ has equation \(2 \pi x + 2 y = \pi ^ { 2 }\).
    Find the exact coordinates of Q.
  3. Show that the exact value of the area shaded in Fig. 8 is \(\frac { 1 } { 8 } \pi \left( \pi ^ { 2 } - 2 \right)\).
OCR MEI C3 Q2
2
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{35646966-3747-4f1d-bf94-60e9e3130afe-2_829_806_944_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
OCR MEI C3 Q3
3
  1. Differentiate \(\frac { \ln x } { x ^ { 2 } }\), simplifying your answer.
  2. Using integration by parts, show that \(\int \frac { \ln x } { x ^ { 2 } } \mathrm {~d} x = - \frac { 1 } { x } ( 1 + \ln x ) + c\).
OCR MEI C3 Q4
4 Evaluate the following integrals, giving your answers in exact form. \begin{displayquote}
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\)
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\) \end{displayquote}
OCR MEI C3 Q2
2 Fig. 8 shows the curve \(y = 3 \ln x + x - x ^ { 2 }\).
The curve crosses the \(x\)-axis at P and Q , and has a turning point at R . The \(x\)-coordinate of Q is approximately 2.05 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{72893fd5-bc8e-433b-8358-f7979b2da636-2_717_830_606_693} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the coordinates of P are \(( 1,0 )\).
  2. Find the coordinates of R , giving the \(y\)-coordinate correct to 3 significant figures. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that R is a maximum point.
  3. Find \(\int \ln x \mathrm {~d} x\). Hence calculate the area of the region enclosed by the curve and the \(x\)-axis between P and Q , giving your answer to 2 significant figures.
OCR MEI C3 Q3
3 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{72893fd5-bc8e-433b-8358-f7979b2da636-3_594_1230_514_494} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of P .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer. Hence calculate the gradient of the curve at P .
  3. Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is \(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\).
  4. Prove algebraically that \(\mathrm { g } ( x )\) is an odd function. Interpret this result graphically.
  5. (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
    (B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
    (C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?
OCR MEI C3 Q1
1 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR MEI C3 Q2
2 Fig. 8 shows the line \(y = x\) and parts of the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\), where $$\mathrm { f } ( x ) = \mathrm { e } ^ { x - 1 } , \quad \mathrm {~g} ( x ) = 1 + \ln x$$ The curves intersect the axes at the points A and B , as shown. The curves and the line \(y = x\) meet at the point C . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a55b82e6-3fcb-4283-bd36-06a17a9a7536-1_804_888_1061_662} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of A and B . Verify that the coordinates of C are \(( 1,1 )\).
  2. Prove algebraically that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
  3. Evaluate \(\int _ { 0 } ^ { 1 } \mathrm { f } ( x ) \mathrm { d } x\), giving your answer in terms of e .
  4. Use integration by parts to find \(\int \ln x \mathrm {~d} x\). Hence show that \(\int _ { \mathrm { e } ^ { - 1 } } ^ { 1 } \mathrm {~g} ( x ) \mathrm { d } x = \frac { 1 } { \mathrm { e } }\).
  5. Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .
OCR MEI C3 Q4
4 Find \(\int x \mathrm { e } ^ { 3 x } \mathrm {~d} x\).
OCR MEI C3 Q5
5 Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 6\).
OCR MEI C3 Q1
1 Evaluate \(\int _ { 1 } ^ { 2 } x ^ { 2 } \ln x \mathrm {~d} x\), giving your answer in an exact form.
OCR MEI C3 Q2
2 Fig. 7 shows the curve \(y = \frac { x ^ { 2 } } { 1 + 2 x ^ { 3 } }\). It is undefined at \(x = a\); the line \(x = a\) is a vertical asymptote. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{00c12cc4-f7ee-4219-8d34-a1854284f65d-1_647_1027_832_534} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Calculate the value of \(a\), giving your answer correct to 3 significant figures.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x - 2 x ^ { 4 } } { \left( 1 + 2 x ^ { 3 } \right) ^ { 2 } }\). Hence determine the coordinates of the turning points of the curve.
  3. Show that the area of the region between the curve and the \(x\)-axis from \(x = 0\) to \(x = 1\) is \(\frac { 1 } { 6 } \ln 3\).
OCR MEI C3 Q3
3 Fig. 8 shows part of the curve \(y = x \cos 2 x\), together with a point P at which the curve crosses the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{00c12cc4-f7ee-4219-8d34-a1854284f65d-2_425_974_478_591} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P .
  2. Show algebraically that \(x \cos 2 x\) is an odd function, and interpret this result graphically.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  4. Show that turning points occur on the curve for values of \(x\) which satisfy the equation \(x \tan 2 x = \frac { 1 } { 2 }\).
  5. Find the gradient of the curve at the origin. Show that the second derivative of \(x \cos 2 x\) is zero when \(x = 0\).
  6. Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } x \cos 2 x \mathrm {~d} x\), giving your answer in terms of \(\pi\). Interpret this result graphically.
OCR MEI C3 Q1
1 Fig. 7 shows the curve $$y = 2 x - x \ln x , \text { where } x > 0 .$$ The curve crosses the \(x\)-axis at A , and has a turning point at B . The point C on the curve has \(x\)-coordinate 1 . Lines CD and BE are drawn parallel to the \(y\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{74cc215f-bd55-489d-aa4b-0f67c2c8de52-1_529_1259_657_602} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the \(x\)-coordinate of A , giving your answer in terms of e .
  2. Find the exact coordinates of B .
  3. Show that the tangents at A and C are perpendicular to each other.
  4. Using integration by parts, show that $$\int x \ln x \mathrm {~d} x = \frac { 1 } { 2 } x ^ { 2 } \ln x - \frac { 1 } { 4 } x ^ { 2 } + c$$ Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines CD and BE .
OCR MEI C3 Q2
2 Show that \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } x \sin 2 x \mathrm {~d} x = \frac { 3 \sqrt { 3 } \pi } { 24 }\).
OCR MEI C3 Q3
3 Fig. 8 shows part of the curve \(y = x \sin 3 x\). It crosses the \(x\)-axis at P . The point on the curve with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\) is Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{74cc215f-bd55-489d-aa4b-0f67c2c8de52-2_420_780_549_655} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(x\)-coordinate of P .
  2. Show that Q lies on the line \(y = x\).
  3. Differentiate \(x \sin 3 x\). Hence prove that the line \(y = x\) touches the curve at Q .
  4. Show that the area of the region bounded by the curve and the line \(y = x\) is \(\frac { 1 } { 72 } \left( \pi ^ { 2 } - 8 \right)\).
  5. Differentiate \(x \cos 2 x\) with respect to \(x\).
  6. Integrate \(x \cos 2 x\) with respect to \(x\).
OCR MEI C3 Q1
1 Either prove or disprove each of the following statements.
  1. 'If \(m\) and \(n\) are consecutive odd numbers, then at least one of \(m\) and \(n\) is a prime number.'
  2. 'If \(m\) and \(n\) are consecutive even numbers, then \(m n\) is divisible by 8 .'
OCR MEI C3 Q2
2
  1. Disprove the following statement: $$3 ^ { n } + 2 \text { is prime for all integers } n \geqslant 0 .$$
  2. Prove that no number of the form \(3 ^ { n }\) (where \(n\) is a positive integer) has 5 as its final digit.
OCR MEI C3 Q3
3
  1. Factorise fully \(n ^ { 3 } - n\).
  2. Hence prove that, if \(n\) is an integer, \(n ^ { 3 } - n\) is divisible by 6 .