Questions — OCR MEI C2 (454 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C2 2010 June Q7
7 Express \(\log _ { a } x ^ { 3 } + \log _ { a } \sqrt { x }\) in the form \(k \log _ { a } x\).
OCR MEI C2 2010 June Q8
8 Showing your method clearly, solve the equation \(4 \sin ^ { 2 } \theta = 3 + \cos ^ { 2 } \theta\), for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR MEI C2 2010 June Q9
9 The points \(( 2,6 )\) and \(( 3,18 )\) lie on the curve \(y = a x ^ { n }\).
Use logarithms to find the values of \(a\) and \(n\), giving your answers correct to 2 decimal places.
OCR MEI C2 2010 June Q11
11
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-4_775_768_260_733} \captionsetup{labelformat=empty} \caption{Fig. 11.1}
    \end{figure} A boat travels from P to Q and then to R . As shown in Fig. 11.1, Q is 10.6 km from P on a bearing of \(045 ^ { \circ }\). R is 9.2 km from P on a bearing of \(113 ^ { \circ }\), so that angle QPR is \(68 ^ { \circ }\). Calculate the distance and bearing of R from Q .
  2. Fig. 11.2 shows the cross-section, EBC, of the rudder of a boat. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-4_531_1490_1509_363} \captionsetup{labelformat=empty} \caption{Fig. 11.2}
    \end{figure} BC is an arc of a circle with centre A and radius 80 cm . Angle \(\mathrm { CAB } = \frac { 2 \pi } { 3 }\) radians.
    EC is an arc of a circle with centre D and radius \(r \mathrm {~cm}\). Angle CDE is a right angle.
    1. Calculate the area of sector ABC .
    2. Show that \(r = 40 \sqrt { 3 }\) and calculate the area of triangle CDA.
    3. Hence calculate the area of cross-section of the rudder. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-5_881_1378_255_379} \captionsetup{labelformat=empty} \caption{Fig. 12}
      \end{figure} A branching plant has stems, nodes, leaves and buds.
      • There are 7 leaves at each node.
  3. From each node, 2 new stems grow.
  4. At the end of each final stem, there is a bud.
  5. Fig. 12 shows one such plant with 3 stages of nodes. It has 15 stems, 7 nodes, 49 leaves and 8 buds.
    (i) One of these plants has 10 stages of nodes.
    (A) How many buds does it have?
    (B) How many stems does it have?
    (ii) (A) Show that the number of leaves on one of these plants with \(n\) stages of nodes is $$7 \left( 2 ^ { n } - 1 \right) .$$ (B) One of these plants has \(n\) stages of nodes and more than 200000 leaves. Show that \(n\) satisfies the inequality \(n > \frac { \log _ { 10 } 200007 - \log _ { 10 } 7 } { \log _ { 10 } 2 }\). Hence find the least possible value of \(n\).