A-Level Maths
Courses
Papers
Questions
Search
Questions — OCR MEI C2
(454 questions)
Browse by module
All questions
AEA
AS Paper 1
AS Paper 2
AS Pure
C1
C12
C2
C3
C34
C4
CP AS
CP1
CP2
D1
D2
F1
F2
F3
FD1
FD1 AS
FD2
FD2 AS
FM1
FM1 AS
FM2
FM2 AS
FP1
FP1 AS
FP2
FP2 AS
FP3
FS1
FS1 AS
FS2
FS2 AS
Further AS Paper 1
Further AS Paper 2 Discrete
Further AS Paper 2 Mechanics
Further AS Paper 2 Statistics
Further Additional Pure
Further Additional Pure AS
Further Discrete
Further Discrete AS
Further Extra Pure
Further Mechanics
Further Mechanics A AS
Further Mechanics AS
Further Mechanics B AS
Further Mechanics Major
Further Mechanics Minor
Further Numerical Methods
Further Paper 1
Further Paper 2
Further Paper 3
Further Paper 3 Discrete
Further Paper 3 Mechanics
Further Paper 3 Statistics
Further Paper 4
Further Pure Core
Further Pure Core 1
Further Pure Core 2
Further Pure Core AS
Further Pure with Technology
Further Statistics
Further Statistics A AS
Further Statistics AS
Further Statistics B AS
Further Statistics Major
Further Statistics Minor
Further Unit 1
Further Unit 2
Further Unit 3
Further Unit 4
Further Unit 5
Further Unit 6
H240/01
H240/02
H240/03
M1
M2
M3
M4
M5
Mechanics 1
P1
P2
P3
P4
PMT Mocks
PURE
Paper 1
Paper 2
Paper 3
Pure 1
S1
S2
S3
S4
SPS ASFM
SPS ASFM Mechanics
SPS ASFM Pure
SPS ASFM Statistics
SPS FM
SPS FM Mechanics
SPS FM Pure
SPS FM Statistics
SPS SM
SPS SM Mechanics
SPS SM Pure
SPS SM Statistics
Stats 1
Unit 1
Unit 2
Unit 3
Unit 4
Browse by board
AQA
AS Paper 1
AS Paper 2
C1
C2
C3
C4
D1
D2
FP1
FP2
FP3
Further AS Paper 1
Further AS Paper 2 Discrete
Further AS Paper 2 Mechanics
Further AS Paper 2 Statistics
Further Paper 1
Further Paper 2
Further Paper 3 Discrete
Further Paper 3 Mechanics
Further Paper 3 Statistics
M1
M2
M3
Paper 1
Paper 2
Paper 3
S1
S2
S3
CAIE
FP1
FP2
Further Paper 1
Further Paper 2
Further Paper 3
Further Paper 4
M1
M2
P1
P2
P3
S1
S2
Edexcel
AEA
AS Paper 1
AS Paper 2
C1
C12
C2
C3
C34
C4
CP AS
CP1
CP2
D1
D2
F1
F2
F3
FD1
FD1 AS
FD2
FD2 AS
FM1
FM1 AS
FM2
FM2 AS
FP1
FP1 AS
FP2
FP2 AS
FP3
FS1
FS1 AS
FS2
FS2 AS
M1
M2
M3
M4
M5
P1
P2
P3
P4
PMT Mocks
Paper 1
Paper 2
Paper 3
S1
S2
S3
S4
OCR
AS Pure
C1
C2
C3
C4
D1
D2
FD1 AS
FM1 AS
FP1
FP1 AS
FP2
FP3
FS1 AS
Further Additional Pure
Further Additional Pure AS
Further Discrete
Further Discrete AS
Further Mechanics
Further Mechanics AS
Further Pure Core 1
Further Pure Core 2
Further Pure Core AS
Further Statistics
Further Statistics AS
H240/01
H240/02
H240/03
M1
M2
M3
M4
Mechanics 1
PURE
Pure 1
S1
S2
S3
S4
Stats 1
OCR MEI
AS Paper 1
AS Paper 2
C1
C2
C3
C4
D1
D2
FP1
FP2
FP3
Further Extra Pure
Further Mechanics A AS
Further Mechanics B AS
Further Mechanics Major
Further Mechanics Minor
Further Numerical Methods
Further Pure Core
Further Pure Core AS
Further Pure with Technology
Further Statistics A AS
Further Statistics B AS
Further Statistics Major
Further Statistics Minor
M1
M2
M3
M4
Paper 1
Paper 2
Paper 3
S1
S2
S3
S4
SPS
SPS ASFM
SPS ASFM Mechanics
SPS ASFM Pure
SPS ASFM Statistics
SPS FM
SPS FM Mechanics
SPS FM Pure
SPS FM Statistics
SPS SM
SPS SM Mechanics
SPS SM Pure
SPS SM Statistics
WJEC
Further Unit 1
Further Unit 2
Further Unit 3
Further Unit 4
Further Unit 5
Further Unit 6
Unit 1
Unit 2
Unit 3
Unit 4
OCR MEI C2 2010 June Q7
7 Express \(\log _ { a } x ^ { 3 } + \log _ { a } \sqrt { x }\) in the form \(k \log _ { a } x\).
OCR MEI C2 2010 June Q8
8 Showing your method clearly, solve the equation \(4 \sin ^ { 2 } \theta = 3 + \cos ^ { 2 } \theta\), for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR MEI C2 2010 June Q9
9 The points \(( 2,6 )\) and \(( 3,18 )\) lie on the curve \(y = a x ^ { n }\).
Use logarithms to find the values of \(a\) and \(n\), giving your answers correct to 2 decimal places.
OCR MEI C2 2010 June Q11
11
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-4_775_768_260_733} \captionsetup{labelformat=empty} \caption{Fig. 11.1}
\end{figure} A boat travels from P to Q and then to R . As shown in Fig. 11.1, Q is 10.6 km from P on a bearing of \(045 ^ { \circ }\). R is 9.2 km from P on a bearing of \(113 ^ { \circ }\), so that angle QPR is \(68 ^ { \circ }\). Calculate the distance and bearing of R from Q .
Fig. 11.2 shows the cross-section, EBC, of the rudder of a boat. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-4_531_1490_1509_363} \captionsetup{labelformat=empty} \caption{Fig. 11.2}
\end{figure} BC is an arc of a circle with centre A and radius 80 cm . Angle \(\mathrm { CAB } = \frac { 2 \pi } { 3 }\) radians.
EC is an arc of a circle with centre D and radius \(r \mathrm {~cm}\). Angle CDE is a right angle.
Calculate the area of sector ABC .
Show that \(r = 40 \sqrt { 3 }\) and calculate the area of triangle CDA.
Hence calculate the area of cross-section of the rudder. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e5ac28f3-d61a-4b40-8b47-28c930761a28-5_881_1378_255_379} \captionsetup{labelformat=empty} \caption{Fig. 12}
\end{figure} A branching plant has stems, nodes, leaves and buds.
There are 7 leaves at each node.
From each node, 2 new stems grow.
At the end of each final stem, there is a bud.
Fig. 12 shows one such plant with 3 stages of nodes. It has 15 stems, 7 nodes, 49 leaves and 8 buds.
(i) One of these plants has 10 stages of nodes.
(A) How many buds does it have?
(B) How many stems does it have?
(ii) (A) Show that the number of leaves on one of these plants with \(n\) stages of nodes is $$7 \left( 2 ^ { n } - 1 \right) .$$ (B) One of these plants has \(n\) stages of nodes and more than 200000 leaves. Show that \(n\) satisfies the inequality \(n > \frac { \log _ { 10 } 200007 - \log _ { 10 } 7 } { \log _ { 10 } 2 }\). Hence find the least possible value of \(n\).
Previous
1
2
3
...
17
18
19