Questions — OCR (4628 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR H240/02 2019 June Q7
5 marks Challenging +1.2
7 In this question you must show detailed reasoning.
Use the substitution \(u = 6 x ^ { 2 } + x\) to solve the equation \(36 x ^ { 4 } + 12 x ^ { 3 } + 7 x ^ { 2 } + x - 2 = 0\).
OCR H240/02 2019 June Q8
6 marks Easy -1.3
8 The stem-and-leaf diagram shows the heights, in centimetres, of 17 plants, measured correct to the nearest centimetre.
55799
63455599
745799
8
99
Key: 5 | 6 means 56
  1. Find the median and inter-quartile range of these heights.
  2. Calculate the mean and standard deviation of these heights.
  3. State one advantage of using the median rather than the mean as a measure of average for these heights.
OCR H240/02 2019 June Q9
11 marks Standard +0.3
9
  1. The masses, in grams, of plums of a certain kind have the distribution \(\mathrm { N } ( 55,18 )\).
    1. Find the probability that a plum chosen at random has a mass between 50.0 and 60.0 grams.
    2. The heaviest \(5 \%\) of plums are classified as extra large. Find the minimum mass of extra large plums.
    3. The plums are packed in bags, each containing 10 randomly selected plums. Find the probability that a bag chosen at random has a total mass of less than 530 g .
  2. The masses, in grams, of apples of a certain kind have the distribution \(\mathrm { N } \left( 67 , \sigma ^ { 2 } \right)\). It is given that half of the apples have masses between 62 g and 72 g . Determine \(\sigma\).
OCR H240/02 2019 June Q10
7 marks Standard +0.3
10 The level, in grams per millilitre, of a pollutant at different locations in a certain river is denoted by the random variable \(X\), where \(X\) has the distribution \(\mathrm { N } ( \mu , 0.0000409 )\). In the past the value of \(\mu\) has been 0.0340 . This year the mean level of the pollutant at 50 randomly chosen locations was found to be 0.0325 grams per millilitre. Test, at the 5\% significance level, whether the mean level of pollutant has changed.
OCR H240/02 2019 June Q11
8 marks Moderate -0.8
11 A trainer was asked to give a lecture on population profiles in different Local Authorities (LAs) in the UK. Using data from the 2011 census, he created the following scatter diagram for 17 selected LAs. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{17 Selected Local Authorities} \includegraphics[alt={},max width=\textwidth]{1a0e0afb-81be-45d1-8c86-f98e508e9a49-08_560_897_466_246}
\end{figure} He selected the 17 LAs using the following method. The proportions of people aged 18 to 24 and aged 65+ in any Local Authority are denoted by \(P _ { \text {young } }\) and \(P _ { \text {senior } }\) respectively. The trainer used a spreadsheet to calculate the value of \(k = \frac { P _ { \text {young } } } { P _ { \text {senior } } }\) for each of the 348 LAs in the UK. He then used specific ranges of values of \(k\) to select the 17 LAs.
  1. Estimate the ranges of values of \(k\) that he used to select these 17 LAs.
  2. Using the 17 LAs the trainer carried out a hypothesis test with the following hypotheses. \(\mathrm { H } _ { 0 }\) : There is no linear correlation in the population between \(P _ { \text {young } }\) and \(P _ { \text {senior } }\). \(\mathrm { H } _ { 1 }\) : There is negative linear correlation in the population between \(P _ { \text {young } }\) and \(P _ { \text {senior } }\).
    He found that the value of Pearson's product-moment correlation coefficient for the 17 LAs is - 0.797 , correct to 3 significant figures.
    1. Use the table on page 9 to show that this value is significant at the \(1 \%\) level. The trainer concluded that there is evidence of negative linear correlation between \(P _ { \text {young } }\) and \(P _ { \text {senior } }\) in the population.
    2. Use the diagram to comment on the reliability of this conclusion.
  3. Describe one outstanding feature of the population in the areas represented by the points in the bottom right hand corner of the diagram.
  4. The trainer's audience included representatives from several universities. Suggest a reason why the diagram might be of particular interest to these people. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Critical values of Pearson's product-moment correlation coefficient}
    \multirow{2}{*}{1-tail test 2-tail test}5\%2.5\%1\%0.5\%
    10\%5\%2\%1\%
    \(n\)
    1----
    2----
    30.98770.99690.99950.9999
    40.90000.95000.98000.9900
    50.80540.87830.93430.9587
    60.72930.81140.88220.9172
    70.66940.75450.83290.8745
    80.62150.70670.78870.8343
    90.58220.66640.74980.7977
    100.54940.63190.71550.7646
    110.52140.60210.68510.7348
    120.49730.57600.65810.7079
    130.47620.55290.63390.6835
    140.45750.53240.61200.6614
    150.44090.51400.59230.6411
    160.42590.49730.57420.6226
    170.41240.48210.55770.6055
    180.40000.46830.54250.5897
    190.38870.45550.52850.5751
    200.37830.44380.51550.5614
    210.36870.43290.50340.5487
    220.35980.42270.49210.5368
    230.35150.41320.48150.5256
    240.34380.40440.47160.5151
    250.33650.39610.46220.5052
    260.32970.38820.45340.4958
    270.32330.38090.44510.4869
    280.31720.37390.43720.4785
    290.31150.36730.42970.4705
    300.30610.36100.42260.4629
    \end{table} Turn over for questions 12 and 13
OCR H240/02 2019 June Q12
12 marks Moderate -0.8
12 A random variable \(X\) has probability distribution defined as follows. $$\mathrm { P } ( X = x ) = \begin{cases} k x & x = 1,2,3,4,5 , \\ 0 & \text { otherwise, } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(\mathrm { P } ( X = 3 ) = 0.2\).
  2. Show in a table the values of \(X\) and their probabilities.
  3. Two independent values of \(X\) are chosen, and their total \(T\) is found.
    1. Find \(\mathrm { P } ( T = 7 )\).
    2. Given that \(T = 7\), determine the probability that one of the values of \(X\) is 2 .
OCR H240/02 2019 June Q13
5 marks Standard +0.8
13 It is known that \(26 \%\) of adults in the UK use a certain app. A researcher selects a random sample of 5000 adults in the UK. The random variable \(X\) is defined as the number of adults in the sample who use the app. Given that \(\mathrm { P } ( X < n ) < 0.025\), calculate the largest possible value of \(n\).
OCR H240/02 2021 November Q1
4 marks Moderate -0.8
1 Differentiate the following with respect to \(x\).
  1. \(\mathrm { e } ^ { - 4 x }\)
  2. \(\frac { x ^ { 2 } } { x + 1 }\)
OCR H240/02 2021 November Q2
2 marks Moderate -0.5
2 The diagram shows part of the graph of \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a cubic polynomial in \(x\). \includegraphics[max width=\textwidth, alt={}, center]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-04_437_620_909_274} Explain why one of the roots of the equation \(\mathrm { f } ( x ) = 0\) cannot be found by the sign change method.
OCR H240/02 2021 November Q3
6 marks Moderate -0.5
3 The 15th term of an arithmetic sequence is 88. The sum of the first 10 terms is 310 .
Determine the first term and the common difference.
OCR H240/02 2021 November Q4
10 marks Moderate -0.3
4 The size, \(P\), of a population of a certain species of insect at time \(t\) months is modelled by the following formula. \(P = 5000 - 1000 \cos ( 30 t ) ^ { \circ }\)
  1. Write down the maximum size of the population.
  2. Write down the difference between the largest and smallest values of \(P\).
  3. Without giving any numerical values, describe briefly the behaviour of the population over time.
  4. Find the time taken for the population to return to its initial size for the first time.
  5. Determine the time on the second occasion when \(P = 4500\). A scientist observes the population over a period of time. He notices that, although the population varies in a way similar to the way predicted by the model, the variations become smaller and smaller over time, and \(P\) converges to 5000 .
  6. Suggest a change to the model that will take account of this observation.
OCR H240/02 2021 November Q6
5 marks Moderate -0.8
6 Alex is investigating the area, \(A\), under the graph of \(y = x ^ { 2 }\) between \(x = 1\) and \(x = 1.5\). They draw the graph, together with rectangles of width \(\delta x = 0.1\), and varying heights \(y\). \includegraphics[max width=\textwidth, alt={}, center]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-06_531_714_356_251}
  1. Use the rectangles in the diagram to show that lower and upper bounds for the area \(A\) are 0.73 and 0.855 respectively.
  2. Alex finds lower and upper bounds for the area \(A\), using widths \(\delta x\) of decreasing size. The results are shown in the table. Where relevant, values are given correct to 3 significant figures.
    Width \(\delta x\)0.10.050.0250.0125
    Lower bound for area \(A\)0.730.7610.7760.784
    Upper bound for area \(A\)0.8550.8230.8070.799
    Use Alex's results to estimate the value of \(A\) correct to \(\mathbf { 2 }\) significant figures. Give a brief justification for your estimate.
  3. Write down an expression, in terms of \(y\) and \(\delta x\), for the exact value of the area \(A\).
OCR H240/02 2021 November Q7
4 marks Challenging +1.2
7 Differentiate \(\cos x\) with respect to \(x\), from first principles.
OCR H240/02 2021 November Q8
6 marks Moderate -0.8
8 The number \(K\) is defined by \(K = n ^ { 3 } + 1\), where \(n\) is an integer greater than 2 .
  1. Given that \(n ^ { 3 } + 1 \equiv ( n + 1 ) \left( n ^ { 2 } + b n + c \right)\), find the constants \(b\) and \(c\).
  2. Prove that \(K\) has at least two distinct factors other than 1 and \(K\).
OCR H240/02 2021 November Q9
6 marks Standard +0.3
9 Points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\) relative to an origin \(O\) in 3-dimensional space. Rectangles \(O A D C\) and \(B E F G\) are the base and top surface of a cuboid. \includegraphics[max width=\textwidth, alt={}, center]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-07_522_812_952_280}
  • The point \(M\) is the midpoint of \(B C\).
  • The point \(X\) lies on \(A M\) such that \(A X = 2 X M\).
    1. Find \(\overrightarrow { O X }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\), simplifying your answer.
    2. Hence show that the lines \(O F\) and \(A M\) intersect.
OCR H240/02 2021 November Q10
6 marks Moderate -0.8
10 A researcher plans to carry out a statistical investigation to test whether there is linear correlation between the time ( \(T\) weeks) from conception to birth, and the birth weight ( \(W\) grams) of new-born babies.
  1. Explain why a 1-tail test is appropriate in this context. The researcher records the values of \(T\) and \(W\) for a random sample of 11 babies. They calculate Pearson's product-moment correlation coefficient for the sample and find that the value is 0.722 .
  2. Use the table below to carry out the test at the \(1 \%\) significance level. \section*{Critical values of Pearson's product-moment correlation coefficient.}
    \multirow{2}{*}{}1-tail test5\%2.5\%1\%0.5\%
    2-tail test10\%5\%2.5\%1\%
    \multirow{4}{*}{\(n\)}100.54940.63190.71550.7646
    110.52140.60210.68510.7348
    120.49730.57600.65810.7079
    130.47620.55290.63390.6835
OCR H240/02 2021 November Q11
2 marks Moderate -0.8
11 Zac is planning to write a report on the music preferences of the students at his college. There is a large number of students at the college.
  1. State one reason why Zac might wish to obtain information from a sample of students, rather than from all the students.
  2. Amaya suggests that Zac should use a sample that is stratified by school year. Give one advantage of this method as compared with random sampling, in this context. Zac decides to take a random sample of 60 students from his college. He asks each student how many hours per week, on average, they spend listening to music during term. From his results he calculates the following statistics.
    Mean
    Standard
    deviation
    Median
    Lower
    quartile
    Upper
    quartile
    21.04.2020.518.022.9
  3. Sundip tells Zac that, during term, she spends on average 30 hours per week listening to music. Discuss briefly whether this value should be considered an outlier.
  4. Layla claims that, during term, each student spends on average 20 hours per week listening to music. Zac believes that the true figure is higher than 20 hours. He uses his results to carry out a hypothesis test at the 5\% significance level. Assume that the time spent listening to music is normally distributed with standard deviation 4.20 hours. Carry out the test.
OCR H240/02 2021 November Q12
13 marks Standard +0.3
12 Anika and Beth are playing a game which consists of several points.
  • The probability that Anika will win any point is 0.7 .
  • The probability that Beth will win any point is 0.3 .
  • The outcome of each point is independent of the outcome of every other point.
The first player to win two points wins the game.
  1. Write down the probability that the game consists of more than three points.
  2. Complete the probability tree diagram in the Printed Answer Booklet showing all the possibilities for the game.
  3. Determine the probability that Beth wins the game.
  4. Determine the probability that the game consists of exactly three points.
  5. Given that Beth wins the game, determine the probability that the game consists of exactly three points.
OCR H240/02 2021 November Q13
9 marks Moderate -0.8
13 The four pie charts illustrate the numbers of employees using different methods of travel in four Local Authorities in 2011. \includegraphics[max width=\textwidth, alt={}, center]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-10_1131_1077_347_242}
\multirow[t]{4}{*}{Key:}\multirow{4}{*}{\includegraphics[max width=\textwidth, alt={}]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-10_105_142_1578_465} }Public transport
Private motorised transport
Bicycle
All other methods of travel
  1. State, with reasons, which of the four Local Authorities is most likely to be a rural area with many hills.
  2. Explain why pie charts are more suitable for answering part (a) than bar charts showing the same data.
  3. Two of the Local Authorities represent urban areas.
    1. State with a reason which two Local Authorities are likely to be urban.
    2. One urban Local Authority introduced a Park-and-Ride service in 2006. Users of this service drive to the edge of the urban area and then use buses to take them into the centre of the area. A student claims that a comparison of the corresponding pie charts for 2001 (not shown) and 2011 would enable them to identify which Local Authority this was. State with a reason whether you agree with the student.
OCR H240/02 2021 November Q14
11 marks Standard +0.8
14 The probability distribution of a random variable \(X\) is modelled as follows. \(\mathrm { P } ( X = x ) = \begin{cases} \frac { k } { x } & x = 1,2,3,4 , \\ 0 & \text { otherwise, } \end{cases}\) where \(k\) is a constant.
  1. Show that \(k = \frac { 12 } { 25 }\).
  2. Show in a table the values of \(X\) and their probabilities.
  3. The values of three independent observations of \(X\) are denoted by \(X _ { 1 } , X _ { 2 }\) and \(X _ { 3 }\). Find \(\mathrm { P } \left( X _ { 1 } > X _ { 2 } + X _ { 3 } \right)\). In a game, a player notes the values of successive independent observations of \(X\) and keeps a running total. The aim of the game is to reach a total of exactly 7 .
  4. Determine the probability that a total of exactly 7 is first reached on the 5th observation. \section*{OCR} Oxford Cambridge and RSA
OCR H240/02 Q1
4 marks Easy -1.3
1 Simplify fully.
  1. \(\sqrt { a ^ { 3 } } \times \sqrt { 16 a }\)
  2. \(\quad \left( 4 b ^ { 6 } \right) ^ { \frac { 5 } { 2 } }\)
OCR H240/02 Q2
7 marks Moderate -0.8
2 A curve has equation \(y = x ^ { 5 } - 5 x ^ { 4 }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Verify that the curve has a stationary point when \(x = 4\).
  3. Determine the nature of this stationary point.
OCR H240/02 Q3
9 marks Moderate -0.8
3 A publisher has to choose the price at which to sell a certain new book. The total profit, \(\pounds t\), that the publisher will make depends on the price, \(\pounds p\). He decides to use a model that includes the following assumptions.
  • If the price is low, many copies will be sold, but the profit on each copy sold will be small, and the total profit will be small.
  • If the price is high, the profit on each copy sold will be high, but few copies will be sold, and the total profit will be small.
The graphs below show two possible models. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2f45d6c-cfdc-455b-ab08-597b06a69f36-05_346_465_1027_374} \captionsetup{labelformat=empty} \caption{Model A}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2f45d6c-cfdc-455b-ab08-597b06a69f36-05_348_476_1025_1080} \captionsetup{labelformat=empty} \caption{Model B}
\end{figure}
  1. Explain how model A is inconsistent with one of the assumptions given above.
  2. Given that the equation of the curve in model B is quadratic, show that this equation is of the form \(t = k \left( 12 p - p ^ { 2 } \right)\), and find the value of the constant \(k\).
  3. The publisher needs to make a total profit of at least \(\pounds 6400\). Use the equation found in part (b) to find the range of values within which model B suggests that the price of the book must lie.
  4. Comment briefly on how realistic model B may be in the following cases.
    • \(p = 0\)
    • \(p = 12.1\)
OCR H240/02 Q4
7 marks Moderate -0.8
4
  1. Express \(\frac { 1 } { ( x - 1 ) ( x + 2 ) }\) in partial fractions
    [0pt] [2]
  2. In this question you must show detailed reasoning. Hence find \(\int _ { 2 } ^ { 3 } \frac { 1 } { ( x - 1 ) ( x + 2 ) } \mathrm { d } x\).
    Give your answer in its simplest form.
OCR H240/02 Q5
11 marks Standard +0.3
5 The diagram shows the circle with centre O and radius 2, and the parabola \(y = \frac { 1 } { \sqrt { 3 } } \left( 4 - x ^ { 2 } \right)\). \includegraphics[max width=\textwidth, alt={}, center]{f2f45d6c-cfdc-455b-ab08-597b06a69f36-06_838_970_1059_280} The circle meets the parabola at points \(P\) and \(Q\), as shown in the diagram.
  1. Verify that the coordinates of \(Q\) are \(( 1 , \sqrt { 3 } )\).
  2. Find the exact area of the shaded region enclosed by the \(\operatorname { arc } P Q\) of the circle and the parabola.
    [0pt] [8]