OCR H240/02 2021 November — Question 6

Exam BoardOCR
ModuleH240/02 (Pure Mathematics and Statistics)
Year2021
SessionNovember
TopicArea Under & Between Curves

6 Alex is investigating the area, \(A\), under the graph of \(y = x ^ { 2 }\) between \(x = 1\) and \(x = 1.5\). They draw the graph, together with rectangles of width \(\delta x = 0.1\), and varying heights \(y\).
\includegraphics[max width=\textwidth, alt={}, center]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-06_531_714_356_251}
  1. Use the rectangles in the diagram to show that lower and upper bounds for the area \(A\) are 0.73 and 0.855 respectively.
  2. Alex finds lower and upper bounds for the area \(A\), using widths \(\delta x\) of decreasing size. The results are shown in the table. Where relevant, values are given correct to 3 significant figures.
    Width \(\delta x\)0.10.050.0250.0125
    Lower bound for area \(A\)0.730.7610.7760.784
    Upper bound for area \(A\)0.8550.8230.8070.799
    Use Alex's results to estimate the value of \(A\) correct to \(\mathbf { 2 }\) significant figures. Give a brief justification for your estimate.
  3. Write down an expression, in terms of \(y\) and \(\delta x\), for the exact value of the area \(A\).