OCR H240/02 2019 June — Question 11

Exam BoardOCR
ModuleH240/02 (Pure Mathematics and Statistics)
Year2019
SessionJune
TopicHypothesis test of Pearson’s product-moment correlation coefficient

11 A trainer was asked to give a lecture on population profiles in different Local Authorities (LAs) in the UK. Using data from the 2011 census, he created the following scatter diagram for 17 selected LAs. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{17 Selected Local Authorities} \includegraphics[alt={},max width=\textwidth]{1a0e0afb-81be-45d1-8c86-f98e508e9a49-08_560_897_466_246}
\end{figure} He selected the 17 LAs using the following method. The proportions of people aged 18 to 24 and aged 65+ in any Local Authority are denoted by \(P _ { \text {young } }\) and \(P _ { \text {senior } }\) respectively. The trainer used a spreadsheet to calculate the value of \(k = \frac { P _ { \text {young } } } { P _ { \text {senior } } }\) for each of the 348 LAs in the UK. He then used specific ranges of values of \(k\) to select the 17 LAs.
  1. Estimate the ranges of values of \(k\) that he used to select these 17 LAs.
  2. Using the 17 LAs the trainer carried out a hypothesis test with the following hypotheses.
    \(\mathrm { H } _ { 0 }\) : There is no linear correlation in the population between \(P _ { \text {young } }\) and \(P _ { \text {senior } }\).
    \(\mathrm { H } _ { 1 }\) : There is negative linear correlation in the population between \(P _ { \text {young } }\) and \(P _ { \text {senior } }\).
    He found that the value of Pearson's product-moment correlation coefficient for the 17 LAs is - 0.797 , correct to 3 significant figures.
    1. Use the table on page 9 to show that this value is significant at the \(1 \%\) level. The trainer concluded that there is evidence of negative linear correlation between \(P _ { \text {young } }\) and \(P _ { \text {senior } }\) in the population.
    2. Use the diagram to comment on the reliability of this conclusion.
  3. Describe one outstanding feature of the population in the areas represented by the points in the bottom right hand corner of the diagram.
  4. The trainer's audience included representatives from several universities. Suggest a reason why the diagram might be of particular interest to these people. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Critical values of Pearson's product-moment correlation coefficient}
    \multirow{2}{*}{1-tail test 2-tail test}5\%2.5\%1\%0.5\%
    10\%5\%2\%1\%
    \(n\)
    1----
    2----
    30.98770.99690.99950.9999
    40.90000.95000.98000.9900
    50.80540.87830.93430.9587
    60.72930.81140.88220.9172
    70.66940.75450.83290.8745
    80.62150.70670.78870.8343
    90.58220.66640.74980.7977
    100.54940.63190.71550.7646
    110.52140.60210.68510.7348
    120.49730.57600.65810.7079
    130.47620.55290.63390.6835
    140.45750.53240.61200.6614
    150.44090.51400.59230.6411
    160.42590.49730.57420.6226
    170.41240.48210.55770.6055
    180.40000.46830.54250.5897
    190.38870.45550.52850.5751
    200.37830.44380.51550.5614
    210.36870.43290.50340.5487
    220.35980.42270.49210.5368
    230.35150.41320.48150.5256
    240.34380.40440.47160.5151
    250.33650.39610.46220.5052
    260.32970.38820.45340.4958
    270.32330.38090.44510.4869
    280.31720.37390.43720.4785
    290.31150.36730.42970.4705
    300.30610.36100.42260.4629
    \end{table} Turn over for questions 12 and 13