Questions — OCR M1 (141 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR M1 2005 January Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{5b10afa1-1c45-4370-a0e6-ad8fd626df9a-2_200_537_269_804} A box of weight 100 N rests in equilibrium on a plane inclined at an angle \(\alpha\) to the horizontal. It is given that \(\sin \alpha = 0.28\) and \(\cos \alpha = 0.96\). A force of magnitude \(P \mathrm {~N}\) acts on the box parallel to the plane in the upwards direction (see diagram). The coefficient of friction between the box and the plane is 0.25 .
  1. Find the magnitude of the normal force acting on the box.
  2. Given that the equilibrium is limiting, show that the magnitude of the frictional force acting on the box is 24 N .
  3. Find the value of \(P\) for which the box is on the point of slipping
    (a) down the plane,
    (b) up the plane.
OCR M1 2005 January Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{5b10afa1-1c45-4370-a0e6-ad8fd626df9a-2_221_1153_1340_497} Three small uniform spheres \(A , B\) and \(C\) have masses \(0.4 \mathrm {~kg} , 1.2 \mathrm {~kg}\) and \(m \mathrm {~kg}\) respectively. The spheres move in the same straight line on a smooth horizontal table, with \(B\) between \(A\) and \(C\). Sphere \(A\) is moving towards \(B\) with speed \(6 \mathrm {~ms} ^ { - 1 } , B\) is moving towards \(A\) with speed \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(C\) is moving towards \(B\) with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) (see diagram). Spheres \(A\) and \(B\) collide. After this collision \(B\) moves with speed \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) towards \(C\).
  1. Find the speed with which \(A\) moves after the collision and state the direction of motion of \(A\).
  2. Spheres \(B\) and \(C\) now collide and move away from each other with speeds \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. Find the value of \(m\).
OCR M1 2005 January Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{5b10afa1-1c45-4370-a0e6-ad8fd626df9a-3_638_839_269_653} Three coplanar forces of magnitudes \(5 \mathrm {~N} , 8 \mathrm {~N}\) and 8 N act at the origin \(O\) of rectangular coordinate axes. The directions of the forces are as shown in the diagram.
  1. Find the component of the resultant of the three forces in
    (a) the \(x\)-direction,
    (b) the \(y\)-direction.
  2. Find the magnitude and direction of the resultant.
OCR M1 2005 January Q4
4 A particle moves in a straight line. Its velocity \(t \mathrm {~s}\) after leaving a fixed point on the line is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where \(v = t + 0.1 t ^ { 2 }\). Find
  1. an expression for the acceleration of the particle at time \(t\),
  2. the distance travelled by the particle from time \(t = 0\) until the instant when its acceleration is \(2.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
OCR M1 2005 January Q5
5 Two particles \(A\) and \(B\) are projected vertically upwards from horizontal ground at the same instant. The speeds of projection of \(A\) and \(B\) are \(7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(10.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively.
  1. Write down expressions for the heights above the ground of \(A\) and \(B\) at time \(t\) seconds after projection.
  2. Hence find a simplified expression for the difference in the heights of \(A\) and \(B\) at time \(t\) seconds after projection.
  3. Find the difference in the heights of \(A\) and \(B\) when \(A\) is at its maximum height. At the instant when \(B\) is 3.5 m above \(A\), find
  4. whether \(A\) is moving upwards or downwards,
  5. the height of \(A\) above the ground.
OCR M1 2005 January Q6
6 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b10afa1-1c45-4370-a0e6-ad8fd626df9a-4_664_969_264_589} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} A cyclist \(P\) travels along a straight road starting from rest at \(A\) and accelerating at \(2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) up to a speed of \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). He continues at a constant speed of \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), passing through the point \(B 20 \mathrm {~s}\) after leaving \(A\). Fig. 1 shows the ( \(t , v\) ) graph of \(P\) 's journey for \(0 \leqslant t \leqslant 20\). Find
  1. the time for which \(P\) is accelerating,
  2. the distance \(A B\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5b10afa1-1c45-4370-a0e6-ad8fd626df9a-4_607_937_1420_605} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} Another cyclist \(Q\) travels along the same straight road in the opposite direction. She starts at rest from \(B\) at the same instant that \(P\) leaves \(A\). Cyclist \(Q\) accelerates at \(2 \mathrm {~ms} ^ { - 2 }\) up to a speed of \(8 \mathrm {~ms} ^ { - 1 }\) and continues at a constant speed of \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), passing through the point \(A 20 \mathrm {~s}\) after leaving \(B\). Fig. 2 shows the \(( t , x )\) graph of \(Q\) 's journey for \(0 \leqslant t \leqslant 20\), where \(x\) is the displacement of \(Q\) from \(A\) towards \(B\).
  3. Sketch a copy of Fig. 1 and add to your copy a sketch of the ( \(t , v\) ) graph of \(Q\) 's journey for \(0 \leqslant t \leqslant 20\).
  4. Sketch a copy of Fig. 2 and add to your copy a sketch of the \(( t , x )\) graph of \(P\) 's journey for \(0 \leqslant t \leqslant 20\).
  5. Find the value \(t\) at the instant that \(P\) and \(Q\) pass each other.
    \includegraphics[max width=\textwidth, alt={}, center]{5b10afa1-1c45-4370-a0e6-ad8fd626df9a-5_447_739_269_703} The upper edge of a smooth plane inclined at \(70 ^ { \circ }\) to the horizontal is joined to an edge of a rough horizontal table. Particles \(A\) and \(B\), of masses 0.3 kg and 0.2 kg respectively, are attached to the ends of a light inextensible string. The string passes over a smooth pulley which is fixed at the top of the smooth inclined plane. Particle \(A\) is held in contact with the rough horizontal table and particle \(B\) is in contact with the smooth inclined plane with the string taut (see diagram). The coefficient of friction between \(A\) and the horizontal table is 0.4 . Particle \(A\) is released from rest and the system starts to move.
  6. Find the acceleration of \(A\) and the tension in the string. The string breaks when the speed of the particles is \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  7. Assuming \(A\) does not reach the pulley, find the distance travelled by \(A\) after the string breaks.
  8. Assuming \(B\) does not reach the ground before \(A\) stops, find the distance travelled by \(B\) from the time the string breaks to the time that \(A\) stops.
OCR M1 2007 January Q1
1 A trailer of mass 600 kg is attached to a car of mass 1100 kg by a light rigid horizontal tow-bar. The car and trailer are travelling along a horizontal straight road with acceleration \(0.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Given that the force exerted on the trailer by the tow-bar is 700 N , find the resistance to motion of the trailer.
  2. Given also that the driving force of the car is 2100 N , find the resistance to motion of the car.
OCR M1 2007 January Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{102e108b-2a36-4765-9990-78e2dd4276c0-2_583_785_676_680} Three horizontal forces of magnitudes \(15 \mathrm {~N} , 11 \mathrm {~N}\) and 13 N act on a particle \(P\) in the directions shown in the diagram. The angles \(\alpha\) and \(\beta\) are such that \(\sin \alpha = 0.28 , \cos \alpha = 0.96 , \sin \beta = 0.8\) and \(\cos \beta = 0.6\).
  1. Show that the component, in the \(y\)-direction, of the resultant of the three forces is zero.
  2. Find the magnitude of the resultant of the three forces.
  3. State the direction of the resultant of the three forces.
    \includegraphics[max width=\textwidth, alt={}, center]{102e108b-2a36-4765-9990-78e2dd4276c0-2_348_711_1804_717} A block \(B\) of mass 0.4 kg and a particle \(P\) of mass 0.3 kg are connected by a light inextensible string. The string passes over a smooth pulley at the edge of a rough horizontal table. \(B\) is in contact with the table and the part of the string between \(B\) and the pulley is horizontal. \(P\) hangs freely below the pulley (see diagram).
  4. The system is in limiting equilibrium with the string taut and \(P\) on the point of moving downwards. Find the coefficient of friction between \(B\) and the table.
  5. A horizontal force of magnitude \(X \mathrm {~N}\), acting directly away from the pulley, is now applied to \(B\). The system is again in limiting equilibrium with the string taut, and with \(P\) now on the point of moving upwards. Find the value of \(X\).
OCR M1 2007 January Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{102e108b-2a36-4765-9990-78e2dd4276c0-3_216_1146_269_502} Three uniform spheres \(L , M\) and \(N\) have masses \(0.8 \mathrm {~kg} , 0.6 \mathrm {~kg}\) and 0.7 kg respectively. The spheres are moving in a straight line on a smooth horizontal table, with \(M\) between \(L\) and \(N\). The sphere \(L\) is moving towards \(M\) with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the spheres \(M\) and \(N\) are moving towards \(L\) with speeds \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively (see diagram).
  1. \(L\) collides with \(M\). As a result of this collision the direction of motion of \(M\) is reversed, and its speed remains \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find the speed of \(L\) after the collision.
  2. \(M\) then collides with \(N\).
    (a) Find the total momentum of \(M\) and \(N\) in the direction of \(M\) 's motion before this collision takes place, and deduce that the direction of motion of \(N\) is reversed as a result of this collision.
    (b) Given that \(M\) is at rest immediately after this collision, find the speed of \(N\) immediately after this collision.
OCR M1 2007 January Q5
5 A particle starts from rest at a point \(A\) at time \(t = 0\), where \(t\) is in seconds. The particle moves in a straight line. For \(0 \leqslant t \leqslant 4\) the acceleration is \(1.8 t \mathrm {~m} \mathrm {~s} ^ { - 2 }\), and for \(4 \leqslant t \leqslant 7\) the particle has constant acceleration \(7.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Find an expression for the velocity of the particle in terms of \(t\), valid for \(0 \leqslant t \leqslant 4\).
  2. Show that the displacement of the particle from \(A\) is 19.2 m when \(t = 4\).
  3. Find the displacement of the particle from \(A\) when \(t = 7\).
OCR M1 2007 January Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{102e108b-2a36-4765-9990-78e2dd4276c0-4_556_1373_269_386} The diagram shows the ( \(t , v\) ) graph for the motion of a hoist used to deliver materials to different levels at a building site. The hoist moves vertically. The graph consists of straight line segments. In the first stage the hoist travels upwards from ground level for 25 s , coming to rest 8 m above ground level.
  1. Find the greatest speed reached by the hoist during this stage. The second stage consists of a 40 s wait at the level reached during the first stage. In the third stage the hoist continues upwards until it comes to rest 40 m above ground level, arriving 135 s after leaving ground level. The hoist accelerates at \(0.02 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) for the first 40 s of the third stage, reaching a speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
  2. the value of \(V\),
  3. the length of time during the third stage for which the hoist is moving at constant speed,
  4. the deceleration of the hoist in the final part of the third stage.
OCR M1 2007 January Q7
7 A particle \(P\) of mass 0.5 kg moves upwards along a line of greatest slope of a rough plane inclined at an angle of \(40 ^ { \circ }\) to the horizontal. \(P\) reaches its highest point and then moves back down the plane. The coefficient of friction between \(P\) and the plane is 0.6 .
  1. Show that the magnitude of the frictional force acting on \(P\) is 2.25 N , correct to 3 significant figures.
  2. Find the acceleration of \(P\) when it is moving
    (a) up the plane,
    (b) down the plane.
  3. When \(P\) is moving up the plane, it passes through a point \(A\) with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    (a) Find the length of time before \(P\) reaches its highest point.
    (b) Find the total length of time for \(P\) to travel from the point \(A\) to its highest point and back to \(A\).
OCR M1 2008 January Q1
1 A man of mass 70 kg stands on the floor of a lift which is moving with an upward acceleration of \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Calculate the magnitude of the force exerted by the floor on the man.
OCR M1 2008 January Q2
2 An ice skater of mass 40 kg is moving in a straight line with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when she collides with a skater of mass 60 kg moving in the opposite direction along the same straight line with speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). After the collision the skaters move together with a common speed in the same straight line. Calculate their common speed, and state their direction of motion.
OCR M1 2008 January Q3
3 Two horizontal forces \(\mathbf { X }\) and \(\mathbf { Y }\) act at a point \(O\) and are at right angles to each other. \(\mathbf { X }\) has magnitude 12 N and acts along a bearing of \(090 ^ { \circ } . \mathbf { Y }\) has magnitude 15 N and acts along a bearing of \(000 ^ { \circ }\).
  1. Calculate the magnitude and bearing of the resultant of \(\mathbf { X }\) and \(\mathbf { Y }\).
  2. A third force \(\mathbf { E }\) is now applied at \(O\). The three forces \(\mathbf { X } , \mathbf { Y }\) and \(\mathbf { E }\) are in equilibrium. State the magnitude of \(\mathbf { E }\), and give the bearing along which it acts.
OCR M1 2008 January Q4
4 The displacement of a particle from a fixed point \(O\) at time \(t\) seconds is \(t ^ { 4 } - 8 t ^ { 2 } + 16\) metres, where \(t \geqslant 0\).
  1. Verify that when \(t = 2\) the particle is at rest at the point \(O\).
  2. Calculate the acceleration of the particle when \(t = 2\).
OCR M1 2008 January Q5
5 A car is towing a trailer along a straight road using a light tow-bar which is parallel to the road. The masses of the car and the trailer are 900 kg and 250 kg respectively. The resistance to motion of the car is 600 N and the resistance to motion of the trailer is 150 N .
  1. At one stage of the motion, the road is horizontal and the pulling force exerted on the trailer is zero.
    (a) Show that the acceleration of the trailer is \(- 0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
    (b) Find the driving force exerted by the car.
    (c) Calculate the distance required to reduce the speed of the car and trailer from \(18 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. At another stage of the motion, the car and trailer are moving down a slope inclined at \(3 ^ { \circ }\) to the horizontal. The resistances to motion of the car and trailer are unchanged. The driving force exerted by the car is 980 N . Find
    (a) the acceleration of the car and trailer,
    (b) the pulling force exerted on the trailer.
OCR M1 2008 January Q6
6 A block of weight 14.7 N is at rest on a horizontal floor. A force of magnitude 4.9 N is applied to the block.
  1. The block is in limiting equilibrium when the 4.9 N force is applied horizontally. Show that the coefficient of friction is \(\frac { 1 } { 3 }\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{db77a63a-6ff8-4fe5-bdd0-15afb7eb4866-3_278_657_552_785} When the force of 4.9 N is applied at an angle of \(30 ^ { \circ }\) above the horizontal, as shown in the diagram, the block moves across the floor. Calculate
    (a) the vertical component of the contact force between the floor and the block, and the magnitude of the frictional force,
    (b) the acceleration of the block.
  3. Calculate the magnitude of the frictional force acting on the block when the 4.9 N force acts at an angle of \(30 ^ { \circ }\) to the upward vertical, justifying your answer fully.
OCR M1 2008 January Q7
7
\includegraphics[max width=\textwidth, alt={}, center]{db77a63a-6ff8-4fe5-bdd0-15afb7eb4866-4_419_419_274_735} Particles \(A\) and \(B\) are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley. The particles are released from rest, with the string taut, and \(A\) and \(B\) at the same height above a horizontal floor (see diagram). In the subsequent motion, \(A\) descends with acceleration \(1.4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) and strikes the floor 0.8 s after being released. It is given that \(B\) never reaches the pulley.
  1. Calculate the distance \(A\) moves before it reaches the floor and the speed of \(A\) immediately before it strikes the floor.
  2. Show that \(B\) rises a further 0.064 m after \(A\) strikes the floor, and calculate the total length of time during which \(B\) is rising.
  3. Sketch the ( \(t , v\) ) graph for the motion of \(B\) from the instant it is released from rest until it reaches a position of instantaneous rest.
  4. Before \(A\) strikes the floor the tension in the string is 5.88 N . Calculate the mass of \(A\) and the mass of \(B\).
  5. The pulley has mass 0.5 kg , and is held in a fixed position by a light vertical chain. Calculate the tension in the chain
    (a) immediately before \(A\) strikes the floor,
    (b) immediately after \(A\) strikes the floor. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
OCR M1 2009 January Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{470e70de-66ba-4dcc-a205-0c92f29471b1-2_227_878_269_635} A particle \(P\) of mass 0.5 kg is travelling with speed \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) on a smooth horizontal plane towards a stationary particle \(Q\) of mass \(m \mathrm {~kg}\) (see diagram). The particles collide, and immediately after the collision \(P\) has speed \(0.8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(Q\) has speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Given that both particles are moving in the same direction after the collision, calculate \(m\).
  2. Given instead that the particles are moving in opposite directions after the collision, calculate \(m\).
OCR M1 2009 January Q2
2 A trailer of mass 500 kg is attached to a car of mass 1250 kg by a light rigid horizontal tow-bar. The car and trailer are travelling along a horizontal straight road. The resistance to motion of the trailer is 400 N and the resistance to motion of the car is 900 N . Find both the tension in the tow-bar and the driving force of the car in each of the following cases.
  1. The car and trailer are travelling at constant speed.
  2. The car and trailer have acceleration \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
OCR M1 2009 January Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{470e70de-66ba-4dcc-a205-0c92f29471b1-2_570_679_1512_731} Three horizontal forces act at the point \(O\). One force has magnitude 7 N and acts along the positive \(x\)-axis. The second force has magnitude 9 N and acts along the positive \(y\)-axis. The third force has magnitude 5 N and acts at an angle of \(30 ^ { \circ }\) below the negative \(x\)-axis (see diagram).
  1. Find the magnitudes of the components of the 5 N force along the two axes.
  2. Calculate the magnitude of the resultant of the three forces. Calculate also the angle the resultant makes with the positive \(x\)-axis.
OCR M1 2009 January Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{470e70de-66ba-4dcc-a205-0c92f29471b1-3_200_897_269_625} A block of mass 3 kg is placed on a horizontal surface. A force of magnitude 20 N acts downwards on the block at an angle of \(30 ^ { \circ }\) to the horizontal (see diagram).
  1. Given that the surface is smooth, calculate the acceleration of the block.
  2. Given instead that the block is in limiting equilibrium, calculate the coefficient of friction between the block and the surface.
OCR M1 2009 January Q5
5 A car is travelling at \(13 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) along a straight road when it passes a point \(A\) at time \(t = 0\), where \(t\) is in seconds. For \(0 \leqslant t \leqslant 6\), the car accelerates at \(0.8 t \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Calculate the speed of the car when \(t = 6\).
  2. Calculate the displacement of the car from \(A\) when \(t = 6\).
  3. Three \(( t , x )\) graphs are shown below, for \(0 \leqslant t \leqslant 6\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{470e70de-66ba-4dcc-a205-0c92f29471b1-3_382_458_1366_340} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{470e70de-66ba-4dcc-a205-0c92f29471b1-3_382_460_1366_881} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{470e70de-66ba-4dcc-a205-0c92f29471b1-3_384_461_1366_1420} \captionsetup{labelformat=empty} \caption{Fig. 3}
    \end{figure} (a) State which of these three graphs is most appropriate to represent the motion of the car.
    (b) For each of the two other graphs give a reason why it is not appropriate to represent the motion of the car.
OCR M1 2009 January Q6
6 Small parcels are being loaded onto a trolley. Initially the parcels are 2.5 m above the trolley.
  1. A parcel is released from rest and falls vertically onto the trolley. Calculate
    (a) the time taken for a parcel to fall onto the trolley,
    (b) the speed of a parcel when it strikes the trolley.

  2. \includegraphics[max width=\textwidth, alt={}, center]{470e70de-66ba-4dcc-a205-0c92f29471b1-4_327_723_603_751} Parcels are often damaged when loaded in the way described, so a ramp is constructed down which parcels can slide onto the trolley. The ramp makes an angle of \(60 ^ { \circ }\) to the vertical, and the coefficient of friction between the ramp and a parcel is 0.2 . A parcel of mass 2 kg is released from rest at the top of the ramp (see diagram). Calculate the speed of the parcel after sliding down the ramp.