Questions — Edexcel FP2 AS (35 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP2 AS 2024 June Q1
    1. The table below is a Cayley table for the group \(G\) with operation ∘
\(а\)\(b\)\(c\)\(d\)\(e\)\(f\)
\(a\)\(d\)c\(b\)\(a\)\(f\)\(e\)
\(b\)\(e\)\(f\)\(a\)\(b\)\(c\)\(d\)
\(c\)\(f\)\(e\)\(d\)\(c\)\(b\)\(a\)
\(d\)\(а\)\(b\)\(c\)\(d\)\(e\)\(f\)
\(e\)\(b\)\(а\)\(f\)\(e\)\(d\)\(c\)
\(f\)c\(d\)\(e\)\(f\)\(а\)\(b\)
  1. State which element is the identity of the group.
  2. Determine the inverse of the element ( \(b \circ c\) )
  3. Give a reason why the set \(\{ a , b , e , f \}\) cannot be a subgroup of \(G\). You must justify your answer.
  4. Show that the set \(\{ b , d , f \}\) is a subgroup of \(G\).
    (ii) Given that \(H\) is a group with an element \(x\) of order 3 and an element \(y\) of order 6 satisfying $$y x = x y ^ { 5 }$$ show that \(y ^ { 3 } x y ^ { 3 } x ^ { 2 }\) is the identity element.
    \includegraphics[max width=\textwidth, alt={}, center]{7d269bf1-f481-46bd-b9d3-fea211b186cf-02_2270_54_309_1980}
Edexcel FP2 AS 2024 June Q2
  1. Tiles are sold in boxes with 21 tiles in each box.
The tiles are laid out in \(x\) rows of 5 tiles and \(y\) rows of 6 tiles.
All the tiles from a box are used before the next box is opened.
When all the rows of tiles have been laid, there are \(n\) tiles left in the last opened box.
  1. Write down a congruence expression for \(n\) in the form $$a x + b y ( \bmod c )$$ where \(a\), \(b\) and \(c\) are integers. Given that
    • exactly 43 rows of tiles are laid
    • there are no tiles left in the last opened box
    • use your congruence expression to determine the minimum number of rows of 6 tiles laid.
Edexcel FP2 AS 2024 June Q3
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
$$\mathbf { A } = \left( \begin{array} { r r } 3 & k
- 5 & 2 \end{array} \right)$$ where \(k\) is a constant.
Given that there exists a matrix \(\mathbf { P }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P }\) is a diagonal matrix where $$\mathbf { P } ^ { - 1 } \mathbf { A } \mathbf { P } = \left( \begin{array} { r r } 8 & 0
0 & - 3 \end{array} \right)$$
  1. show that \(k = - 6\)
  2. determine a suitable matrix \(\mathbf { P }\)
Edexcel FP2 AS 2024 June Q4
  1. A circle \(C\) in the complex plane has equation
$$| z - ( - 3 + 3 i ) | = \alpha | z - ( 1 + 3 i ) |$$ where \(\alpha\) is a real constant with \(\alpha > 1\)
Given that the imaginary axis is a tangent to \(C\)
  1. sketch, on an Argand diagram, the circle \(C\)
  2. explain why the value of \(\alpha\) is 3 The circle \(C\) is contained in the region $$R = \left\{ z \in \mathbb { C } : \beta \leqslant \arg z \leqslant \frac { \pi } { 2 } \right\}$$
  3. Determine the maximum value of \(\beta\) Give your answer in radians to 3 significant figures.
Edexcel FP2 AS 2024 June Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7d269bf1-f481-46bd-b9d3-fea211b186cf-14_317_1557_255_255} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the first three stages of a pattern that is created by a recursive process.
The process starts with a square and proceeds as follows
  • each square is replaced by 5 smaller squares each \(\frac { 1 } { 9 }\) th the size of the square being replaced
  • the 5 smaller squares are the ones in each corner and the one in the centre
  • once each of the squares has been replaced, the square immediately to the right and above the centre square of the pattern is then removed
Let \(u _ { n }\) be the number of squares in the pattern in stage \(n\), where stage 1 is the original square.
  1. Explain why \(u _ { n }\) satisfies the recurrence system $$u _ { 1 } = 1 \quad u _ { n + 1 } = 5 u _ { n } - 1 \quad ( n = 1,2,3 , \ldots )$$
  2. Solve this recurrence system. Given that the initial square has area 25
  3. determine the total area of all the squares in stage 8 of the pattern, giving your answer to 2 significant figures.
Edexcel FP2 AS Specimen Q1
  1. Given that
$$A = \left( \begin{array} { l l } 3 & 1
6 & 4 \end{array} \right)$$
  1. find the characteristic equation of the matrix \(\mathbf { A }\).
  2. Hence show that \(\mathbf { A } ^ { 3 } = 43 \mathbf { A } - 42 \mathbf { I }\).
Edexcel FP2 AS Specimen Q2
  1. (i) Without performing any division, explain why 8184 is divisible by 6
    (ii) Use the Euclidean algorithm to find integers \(a\) and \(b\) such that
$$27 a + 31 b = 1$$
Edexcel FP2 AS Specimen Q3
  1. A curve \(C\) is described by the equation
$$| z - 9 + 12 i | = 2 | z |$$
  1. Show that \(C\) is a circle, and find its centre and radius.
  2. Sketch \(C\) on an Argand diagram. Given that \(w\) lies on \(C\),
  3. find the largest value of \(a\) and the smallest value of \(b\) that must satisfy $$a \leqslant \operatorname { Re } ( w ) \leqslant b$$
Edexcel FP2 AS Specimen Q4
  1. The operation * is defined on the set \(S = \{ 0,2,3,4,5,6 \}\) by \(x ^ { * } y = x + y = x y ( \bmod 7 )\)
*023456
0
20
35
4
54
6
    1. Complete the Cayley table shown above
    2. Show that \(S\) is a group under the operation *
      (You may assume the associative law is satisfied.)
  1. Show that the element 4 has order 3
  2. Find an element which generates the group and express each of the elements in terms of this generator.
Edexcel FP2 AS Specimen Q5
  1. A population of deer on a large estate is assumed to increase by \(10 \%\) during each year due to natural causes.
The population is controlled by removing a constant number, \(Q\), of the deer from the estate at the end of each year. At the start of the first year there are 5000 deer on the estate.
Let \(P _ { n }\) be the population of deer at the end of year \(n\).
  1. Explain, in the context of the problem, the reason that the deer population is modelled by the recurrence relation $$P _ { n } = 1.1 P _ { n - 1 } - Q , \quad P _ { 0 } = 5000 , \quad n \in \mathbb { Z } ^ { + }$$
  2. Prove by induction that \(P _ { n } = ( 1.1 ) ^ { n } ( 5000 - 10 Q ) + 10 Q , \quad n \geqslant 0\)
  3. Explain how the long term behaviour of this population varies for different values of \(Q\).