Questions — Edexcel C1 (490 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C1 Q10
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5e8f154b-c232-49ee-a798-f61ff08ca0b9-4_663_1113_950_402} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the parallelogram \(A B C D\).
The points \(A\) and \(B\) have coordinates \(( - 1,3 )\) and \(( 3,4 )\) respectively and lie on the straight line \(l _ { 1 }\).
  1. Find an equation for \(l _ { 1 }\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers. The points \(C\) and \(D\) lie on the straight line \(l _ { 2 }\) which has the equation \(x - 4 y - 21 = 0\).
  2. Show that the distance between \(l _ { 1 }\) and \(l _ { 2 }\) is \(k \sqrt { 17 }\), where \(k\) is an integer to be found.
  3. Find the area of parallelogram \(A B C D\).
Edexcel C1 Q1
  1. The points \(A , B\) and \(C\) have coordinates \(( - 3,0 ) , ( 5 , - 2 )\) and \(( 4,1 )\) respectively.
Find an equation for the straight line which passes through \(C\) and is parallel to \(A B\).
Give your answer in the form \(a x + b y = c\), where \(a\), \(b\) and \(c\) are integers.
Edexcel C1 Q2
2. Express \(\sqrt { 22.5 }\) in the form \(k \sqrt { 10 }\).
Edexcel C1 Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{01488c70-db95-43cb-9216-23d7dbaaf9fe-2_549_944_708_347} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\). The curve has a maximum at \(( - 3,4 )\) and a minimum at \(( 1 , - 2 )\). Showing the coordinates of any turning points, sketch on separate diagrams the curves with equations
  1. \(y = 2 \mathrm { f } ( x )\),
  2. \(y = - \mathrm { f } ( x )\).
Edexcel C1 Q4
4. (a) Solve the inequality $$4 ( x - 2 ) < 2 x + 5$$ (b) Find the value of \(y\) such that $$4 ^ { y + 1 } = 8 ^ { 2 y - 1 } .$$
Edexcel C1 Q5
  1. A sequence of terms \(\left\{ t _ { n } \right\}\) is defined for \(n \geq 1\) by the recurrence relation
$$t _ { n + 1 } = k t _ { n } - 7 , \quad t _ { 1 } = 3$$ where \(k\) is a constant.
  1. Find expressions for \(t _ { 2 }\) and \(t _ { 3 }\) in terms of \(k\). Given that \(t _ { 3 } = 13\),
  2. find the possible values of \(k\).
Edexcel C1 Q6
6. The curve with equation \(y = \sqrt { 8 x }\) passes through the point \(A\) with \(x\)-coordinate 2. Find an equation for the tangent to the curve at \(A\).
Edexcel C1 Q7
7. As part of a new training programme, Habib decides to do sit-ups every day. He plans to do 20 per day in the first week, 22 per day in the second week, 24 per day in the third week and so on, increasing the daily number of sit-ups by two at the start of each week.
  1. Find the number of sit-ups that Habib will do in the fifth week.
  2. Show that he will do a total of 1512 sit-ups during the first eight weeks. In the \(n\)th week of training, the number of sit-ups that Habib does is greater than 300 for the first time.
  3. Find the value of \(n\).
Edexcel C1 Q8
8. Some ink is poured onto a piece of cloth forming a stain that then spreads. The area of the stain, \(A \mathrm {~cm} ^ { 2 }\), after \(t\) seconds is given by $$A = ( p + q t ) ^ { 2 } ,$$ where \(p\) and \(q\) are positive constants.
Given that when \(t = 0 , A = 4\) and that when \(t = 5 , A = 9\),
  1. find the value of \(p\) and show that \(q = \frac { 1 } { 5 }\),
  2. find \(\frac { \mathrm { d } A } { \mathrm {~d} t }\) in terms of \(t\),
  3. find the rate at which the area of the stain is increasing when \(t = 15\).
Edexcel C1 Q9
9. The curve \(C\) has the equation \(y = x ^ { 2 } + 2 x + 4\).
  1. Express \(x ^ { 2 } + 2 x + 4\) in the form \(a ( x + b ) ^ { 2 } + c\) and hence state the coordinates of the minimum point of \(C\). The straight line \(l\) has the equation \(x + y = 8\).
  2. Sketch \(l\) and \(C\) on the same set of axes.
  3. Find the coordinates of the points where \(I\) and \(C\) intersect.
Edexcel C1 Q10
10. The curve \(C\) has the equation \(y = \mathrm { f } ( x )\). Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - \frac { 2 } { x ^ { 2 } } , \quad x \neq 0 ,$$ and that the point \(A\) on \(C\) has coordinates (2, 6),
  1. find an equation for \(C\),
  2. find an equation for the tangent to \(C\) at \(A\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers,
  3. show that the line \(y = x + 3\) is also a tangent to \(C\).
Edexcel C1 Q1
  1. Find the value of \(y\) such that
$$4 ^ { y + 3 } = 8 .$$
Edexcel C1 Q2
  1. Find
$$\int \left( 3 x ^ { 2 } + \frac { 1 } { 2 x ^ { 2 } } \right) \mathrm { d } x$$
Edexcel C1 Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c4ae1bec-12f4-492d-8027-bba4840ff545-2_337_1235_781_383} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the rectangles \(A B C D\) and \(E F G H\) which are similar.
Given that \(A B = ( 3 - \sqrt { 5 } ) \mathrm { cm } , A D = \sqrt { 5 } \mathrm {~cm}\) and \(E F = ( 1 + \sqrt { 5 } ) \mathrm { cm }\), find the length \(E H\) in cm, giving your answer in the form \(a + b \sqrt { 5 }\) where \(a\) and \(b\) are integers.
Edexcel C1 Q4
4. (a) Sketch on the same diagram the curves \(y = x ^ { 2 } - 4 x\) and \(y = - \frac { 1 } { x }\).
(b) State, with a reason, the number of real solutions to the equation $$x ^ { 2 } - 4 x + \frac { 1 } { x } = 0 .$$
Edexcel C1 Q5
  1. (a) By completing the square, find in terms of the constant \(k\) the roots of the equation
$$x ^ { 2 } + 2 k x + 4 = 0 .$$ (b) Hence find the exact roots of the equation $$x ^ { 2 } + 6 x + 4 = 0 .$$
Edexcel C1 Q6
  1. (a) Evaluate
$$\sum _ { r = 1 } ^ { 50 } ( 80 - 3 r )$$ (b) Show that $$\sum _ { r = 1 } ^ { n } \frac { r + 3 } { 2 } = k n ( n + 7 )$$ where \(k\) is a rational constant to be found.
Edexcel C1 Q8
  1. Given that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ^ { 3 } - 4 } { x ^ { 3 } } , \quad x \neq 0$$
  1. find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\). Given also that \(y = 0\) when \(x = - 1\),
  2. find the value of \(y\) when \(x = 2\).
Edexcel C1 Q9
9. A curve has the equation \(y = ( \sqrt { x } - 3 ) ^ { 2 } , x \geq 0\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1 - \frac { 3 } { \sqrt { x } }\). The point \(P\) on the curve has \(x\)-coordinate 4 .
  2. Find an equation for the normal to the curve at \(P\) in the form \(y = m x + c\).
  3. Show that the normal to the curve at \(P\) does not intersect the curve again.
Edexcel C1 Q10
10. The straight line \(l\) has gradient 3 and passes through the point \(A ( - 6,4 )\).
  1. Find an equation for \(l\) in the form \(y = m x + c\). The straight line \(m\) has the equation \(x - 7 y + 14 = 0\).
    Given that \(m\) crosses the \(y\)-axis at the point \(B\) and intersects \(l\) at the point \(C\),
  2. find the coordinates of \(B\) and \(C\),
  3. show that \(\angle B A C = 90 ^ { \circ }\),
  4. find the area of triangle \(A B C\).
Edexcel C1 Q1
  1. Evaluate \(49 ^ { \frac { 1 } { 2 } } + 8 ^ { \frac { 2 } { 3 } }\).
  2. A sequence is defined by the recurrence relation
$$u _ { n + 1 } = \frac { u _ { n } + 1 } { 3 } , \quad n = 1,2,3 , \ldots$$ Given that \(u _ { 3 } = 5\),
  1. find the value of \(u _ { 4 }\),
  2. find the value of \(u _ { 1 }\).
Edexcel C1 Q3
3. $$f ( x ) = 4 x ^ { 2 } + 12 x + 9$$
  1. Determine the number of real roots that exist for the equation \(\mathrm { f } ( x ) = 0\).
  2. Solve the equation \(\mathrm { f } ( x ) = 8\), giving your answers in the form \(a + b \sqrt { 2 }\) where \(a\) and \(b\) are rational.
Edexcel C1 Q4
4. Find the set of values of \(x\) for which
  1. \(6 x - 11 > x + 4\),
  2. \(x ^ { 2 } - 6 x - 16 < 0\),
  3. both \(6 x - 11 > x + 4\) and \(x ^ { 2 } - 6 x - 16 < 0\).
Edexcel C1 Q5
5. $$f ( x ) = ( 2 - \sqrt { x } ) ^ { 2 } , \quad x > 0$$
  1. Solve the equation \(\mathrm { f } ( x ) = 0\).
  2. Find \(\mathrm { f } ( 3 )\), giving your answer in the form \(a + b \sqrt { 3 }\), where \(a\) and \(b\) are integers.
  3. Find $$\int \mathrm { f } ( x ) \mathrm { d } x$$
Edexcel C1 Q6
  1. The straight line \(l\) passes through the point \(P ( - 3,6 )\) and the point \(Q ( 1 , - 4 )\).
    1. Find an equation for \(l\) in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    The straight line \(m\) has the equation \(2 x + k y + 7 = 0\), where \(k\) is a constant.
    Given that \(l\) and \(m\) are perpendicular,
  2. find the value of \(k\).