Questions — CAIE (7276 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE S2 2016 November Q5
8 marks Standard +0.3
5
  1. The masses, in grams, of certain tomatoes are normally distributed with standard deviation 9 grams. A random sample of 100 tomatoes has a sample mean of 63 grams. Find a \(90 \%\) confidence interval for the population mean mass of these tomatoes.
  2. The masses, in grams, of certain potatoes are normally distributed with known population standard deviation but unknown population mean. A random sample of potatoes is taken in order to find a confidence interval for the population mean. Using a sample of size 50 , a \(95 \%\) confidence interval is found to have width 8 grams.
    1. Using another sample of size 50 , an \(\alpha \%\) confidence interval has width 4 grams. Find \(\alpha\).
    2. Find the sample size \(n\), such that a \(95 \%\) confidence interval has width 4 grams.
CAIE S2 2016 November Q6
9 marks Moderate -0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{e0ad3268-117e-4a0c-942d-84ee148d8907-3_371_504_260_534}
\includegraphics[max width=\textwidth, alt={}, center]{e0ad3268-117e-4a0c-942d-84ee148d8907-3_373_495_260_1123}
\includegraphics[max width=\textwidth, alt={}, center]{e0ad3268-117e-4a0c-942d-84ee148d8907-3_371_497_776_534}
\includegraphics[max width=\textwidth, alt={}, center]{e0ad3268-117e-4a0c-942d-84ee148d8907-3_367_488_778_1128} The diagrams show the probability density functions of four random variables \(W , X , Y\) and \(Z\). Each of the four variables takes values between 0 and 3 only, and their medians are \(m _ { W } , m _ { X } , m _ { Y }\) and \(m _ { Z }\) respectively.
  1. List \(m _ { W } , m _ { X } , m _ { Y }\) and \(m _ { Z }\) in order of size, starting with the largest.
  2. The probability density function of \(X\) is given by $$f ( x ) = \begin{cases} \frac { 4 } { 81 } x ^ { 3 } & 0 \leqslant x \leqslant 3 \\ 0 & \text { otherwise } \end{cases}$$ (a) Show that \(\mathrm { E } ( X ) = \frac { 12 } { 5 }\).
    (b) Calculate \(\mathrm { P } ( X > \mathrm { E } ( X ) )\).
    (c) Write down the value of \(\mathrm { P } ( X < 2 \mathrm { E } ( X ) )\).
CAIE S2 2016 November Q7
11 marks Standard +0.3
7 In the past the time, in minutes, taken for a particular rail journey has been found to have mean 20.5 and standard deviation 1.2. Some new railway signals are installed. In order to test whether the mean time has decreased, a random sample of 100 times for this journey are noted. The sample mean is found to be 20.3 minutes. You should assume that the standard deviation is unchanged.
  1. Carry out a significance test, at the \(4 \%\) level, of whether the population mean time has decreased. Later another significance test of the same hypotheses, using another random sample of size 100 , is carried out at the \(4 \%\) level.
  2. Given that the population mean is now 20.1, find the probability of a Type II error.
  3. State what is meant by a Type II error in this context.
CAIE S2 2016 November Q6
9 marks Moderate -0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{1e20bcc7-a501-4df0-9d49-cca2db4c279a-3_371_504_260_534}
\includegraphics[max width=\textwidth, alt={}, center]{1e20bcc7-a501-4df0-9d49-cca2db4c279a-3_373_495_260_1123}
\includegraphics[max width=\textwidth, alt={}, center]{1e20bcc7-a501-4df0-9d49-cca2db4c279a-3_371_497_776_534}
\includegraphics[max width=\textwidth, alt={}, center]{1e20bcc7-a501-4df0-9d49-cca2db4c279a-3_367_488_778_1128} The diagrams show the probability density functions of four random variables \(W , X , Y\) and \(Z\). Each of the four variables takes values between 0 and 3 only, and their medians are \(m _ { W } , m _ { X } , m _ { Y }\) and \(m _ { Z }\) respectively.
  1. List \(m _ { W } , m _ { X } , m _ { Y }\) and \(m _ { Z }\) in order of size, starting with the largest.
  2. The probability density function of \(X\) is given by $$f ( x ) = \begin{cases} \frac { 4 } { 81 } x ^ { 3 } & 0 \leqslant x \leqslant 3 \\ 0 & \text { otherwise } \end{cases}$$ (a) Show that \(\mathrm { E } ( X ) = \frac { 12 } { 5 }\).
    (b) Calculate \(\mathrm { P } ( X > \mathrm { E } ( X ) )\).
    (c) Write down the value of \(\mathrm { P } ( X < 2 \mathrm { E } ( X ) )\).
CAIE S2 2016 November Q1
3 marks Easy -1.2
1 The random variable \(X\) has the distribution \(\operatorname { Po } ( 3.5 )\). Find \(\mathrm { P } ( X < 3 )\).
CAIE S2 2016 November Q2
3 marks Easy -1.8
2 Dominic wishes to choose a random sample of five students from the 150 students in his year. He numbers the students from 1 to 150 . Then he uses his calculator to generate five random numbers between 0 and 1 . He multiplies each random number by 150 and rounds up to the next whole number to give a student number.
  1. Dominic's first random number is 0.392 . Find the student number that is produced by this random number.
  2. Dominic's second student number is 104 . Find a possible random number that would produce this student number.
  3. Explain briefly why five random numbers may not be enough to produce a sample of five student numbers.
CAIE S2 2016 November Q3
5 marks Standard +0.3
3 A men's triathlon consists of three parts: swimming, cycling and running. Competitors' times, in minutes, for the three parts can be modelled by three independent normal variables with means 34.0, 87.1 and 56.9, and standard deviations 3.2, 4.1 and 3.8, respectively. For each competitor, the total of his three times is called the race time. Find the probability that the mean race time of a random sample of 15 competitors is less than 175 minutes.
CAIE S2 2016 November Q4
5 marks Challenging +1.2
4 The manufacturer of a tablet computer claims that the mean battery life is 11 hours. A consumer organisation wished to test whether the mean is actually greater than 11 hours. They invited a random sample of members to report the battery life of their tablets. They then calculated the sample mean. Unfortunately a fire destroyed the records of this test except for the following partial document.
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-2_467_593_1612_776} Given that the population of battery lives is normally distributed with standard deviation 1.6 hours, find the set of possible values of the sample size, \(n\).
CAIE S2 2016 November Q5
8 marks Moderate -0.3
5 It is claimed that \(30 \%\) of packets of Froogum contain a free gift. Andre thinks that the actual proportion is less than \(30 \%\) and he decides to carry out a hypothesis test at the \(5 \%\) significance level. He buys 20 packets of Froogum and notes the number of free gifts he obtains.
  1. State null and alternative hypotheses for the test.
  2. Use a binomial distribution to find the probability of a Type I error. Andre finds that 3 of the 20 packets contain free gifts.
  3. Carry out the test.
CAIE S2 2016 November Q6
8 marks Standard +0.3
6 A variable \(X\) takes values \(1,2,3,4,5\), and these values are generated at random by a machine. Each value is supposed to be equally likely, but it is suspected that the machine is not working properly. A random sample of 100 values of \(X\), generated by the machine, gives the following results. $$n = 100 \quad \Sigma x = 340 \quad \Sigma x ^ { 2 } = 1356$$
  1. Find a 95\% confidence interval for the population mean of the values generated by the machine.
  2. Use your answer to part (i) to comment on whether the machine may be working properly.
CAIE S2 2016 November Q7
9 marks Standard +0.3
7 Men arrive at a clinic independently and at random, at a constant mean rate of 0.2 per minute. Women arrive at the same clinic independently and at random, at a constant mean rate of 0.3 per minute.
  1. Find the probability that at least 2 men and at least 3 women arrive at the clinic during a 5 -minute period.
  2. Find the probability that fewer than 36 people arrive at the clinic during a 1-hour period.
CAIE S2 2016 November Q8
9 marks Standard +0.3
8
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_302_517_276_427}
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_304_508_274_1215}
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_305_506_717_431}
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_302_504_717_1217} The diagrams show the probability density functions of four random variables \(W , X , Y\) and \(Z\). Each of the four variables takes values between - 3 and 3 only, and their standard deviations are \(\sigma _ { W } , \sigma _ { X } , \sigma _ { Y }\) and \(\sigma _ { Z }\) respectively.
  1. List \(\sigma _ { W } , \sigma _ { X } , \sigma _ { Y }\) and \(\sigma _ { Z }\) in order of size, starting with the largest.
  2. The probability density function of \(X\) is given by $$f ( x ) = \begin{cases} \frac { 1 } { 18 } x ^ { 2 } & - 3 \leqslant x \leqslant 3 \\ 0 & \text { otherwise } \end{cases}$$ (a) Show that \(\sigma _ { X } = 2.32\) correct to 3 significant figures.
    (b) Calculate \(\mathrm { P } \left( X > \sigma _ { X } \right)\).
    (c) Write down the value of \(\mathrm { P } \left( X > 2 \sigma _ { X } \right)\).
CAIE Further Paper 4 2021 June Q1
6 marks Standard +0.3
1 Farmer \(A\) grows apples of a certain variety. Each tree produces 14.8 kg of apples, on average, per year. Farmer \(B\) grows apples of the same variety and claims that his apple trees produce a higher mass of apples per year than Farmer \(A\) 's trees. The masses of apples from Farmer \(B\) 's trees may be assumed to be normally distributed. A random sample of 10 trees from Farmer \(B\) is chosen. The masses, \(x \mathrm {~kg}\), of apples produced in a year are summarised as follows. $$\sum x = 152.0 \quad \sum x ^ { 2 } = 2313.0$$ Test, at the \(5 \%\) significance level, whether Farmer \(B\) 's claim is justified.
CAIE Further Paper 4 2021 June Q2
7 marks Standard +0.3
2 A company is developing a new flavour of chocolate by varying the quantities of the ingredients. A random selection of 9 flavours of chocolate are judged by two tasters who each give marks out of 100 to each flavour of chocolate.
Chocolate\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)\(I\)
Taster 1728675929879876062
Taster 2847274958587827568
Carry out a Wilcoxon matched-pairs signed-rank test at the \(10 \%\) significance level to investigate whether, on average, there is a difference between marks awarded by the two tasters.
CAIE Further Paper 4 2021 June Q3
8 marks Standard +0.8
3 The heights, \(x \mathrm {~m}\), of a random sample of 50 adult males from country \(A\) were recorded. The heights, \(y \mathrm {~m}\), of a random sample of 40 adult males from country \(B\) were also recorded. The results are summarised as follows. $$\Sigma x = 89.0 \quad \Sigma x ^ { 2 } = 159.4 \quad \Sigma y = 67.2 \quad \Sigma y ^ { 2 } = 113.1$$ Find a 95\% confidence interval for the difference between the mean heights of adult males from country \(A\) and adult males from country \(B\).
\(4 X\) is a discrete random variable which takes the values \(0,2,4 , \ldots\). The probability generating function of \(X\) is given by $$G _ { X } ( t ) = \frac { 1 } { 3 - 2 t ^ { 2 } }$$
  1. Find \(\mathrm { E } ( X )\) and \(\operatorname { Var } ( X )\).
  2. Find \(\mathrm { P } ( X = 4 )\).
CAIE Further Paper 4 2021 June Q5
10 marks Standard +0.3
5 Chai packs china mugs into cardboard boxes. Chai's manager suspects that breakages occur at random times and that the number of breakages may follow a Poisson distribution. He takes a small sample of observations and finds that the number of breakages in a one-hour period has a mean of 2.4 and a standard deviation of 1.5.
  1. Explain how this information tends to support the manager's suspicion.
    The manager now takes a larger sample and claims that the numbers of breakages in a one-hour period follow a Poisson distribution. The numbers of breakages in a random sample of 180 one-hour periods are summarised in the following table.
    Number of breakages01234567 or more
    Frequency213346312316100
    The mean number of breakages calculated from this sample is 2.5.
  2. Use the data from this larger sample to carry out a goodness of fit test, at the \(10 \%\) significance level, to test the claim.
CAIE Further Paper 4 2021 June Q6
11 marks Standard +0.8
6 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 8 } & 0 \leqslant x < 1 \\ \frac { 1 } { 28 } ( 8 - x ) & 1 \leqslant x \leqslant 8 \\ 0 & \text { otherwise } \end{cases}$$
  1. Find the cumulative distribution function of \(X\).
  2. Find the value of the constant \(a\) such that \(\mathrm { P } ( \mathrm { X } \leqslant \mathrm { a } ) = \frac { 5 } { 7 }\).
    The random variable \(Y\) is given by \(Y = \sqrt [ 3 ] { X }\).
  3. Find the probability density function of \(Y\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 4 2022 June Q1
8 marks Standard +0.3
1 A manager is investigating the times taken by employees to complete a particular task as a result of the introduction of new technology. He claims that the mean time taken to complete the task is reduced by more than 0.4 minutes. He chooses a random sample of 10 employees. The times taken, in minutes, before and after the introduction of the new technology are recorded in the table.
Employee\(A\)\(B\)\(C\)D\(E\)\(F\)G\(H\)IJ
Time before new technology10.29.812.411.610.811.214.610.612.311.0
Time after new technology9.68.512.410.910.210.612.810.812.510.6
  1. Test at the 10\% significance level whether the manager's claim is justified.
  2. State an assumption that is necessary for this test to be valid.
CAIE Further Paper 4 2022 June Q2
7 marks Challenging +1.2
2 The probability generating function, \(\mathrm { G } _ { Y } ( t )\), of the random variable \(Y\) is given by $$G _ { Y } ( t ) = 0.04 + 0.2 t + 0.37 t ^ { 2 } + 0.3 t ^ { 3 } + 0.09 t ^ { 4 }$$
  1. Find \(\operatorname { Var } ( Y )\).
    The random variable \(Y\) is the sum of two independent observations of the random variable \(X\).
  2. Find the probability generating function of \(X\), giving your answer as a polynomial in \(t\).
CAIE Further Paper 4 2022 June Q3
8 marks Standard +0.3
3 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} k x ( 4 - x ) & 0 \leqslant x < 2 \\ k ( 6 - x ) & 2 \leqslant x \leqslant 6 \\ 0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 40 }\).
  2. Given that \(\mathrm { E } ( X ) = 2.5\), find \(\operatorname { Var } ( X )\).
  3. Find the median value of \(X\).
CAIE Further Paper 4 2022 June Q4
8 marks Standard +0.3
4 A scientist is investigating the numbers of a particular type of butterfly in a certain region. He claims that the numbers of these butterflies found per square metre can be modelled by a Poisson distribution with mean 2.5. He takes a random sample of 120 areas, each of one square metre, and counts the number of these butterflies in each of these areas. The following table shows the observed frequencies together with some of the expected frequencies using the scientist's Poisson distribution.
Number per square metre0123456\(\geqslant 7\)
Observed frequency1220363213610
Expected frequency9.8524.6330.7825.65\(p\)8.023.34\(q\)
  1. Find the values of \(p\) and \(q\), correct to 2 decimal places.
  2. Carry out a goodness of fit test, at the \(10 \%\) significance level, to test the scientist's claim.
CAIE Further Paper 4 2022 June Q5
9 marks Standard +0.3
5 Raman is researching the heights of male giraffes in a particular region. Raman assumes that the heights of male giraffes in this region are normally distributed. He takes a random sample of 8 male giraffes from the region and measures the height, in metres, of each giraffe. These heights are as follows. $$\begin{array} { c c c c c c c c } 5.2 & 5.8 & 4.9 & 6.1 & 5.5 & 5.9 & 5.4 & 5.6 \end{array}$$
  1. Find a \(90 \%\) confidence interval for the population mean height of male giraffes in this region. [5]
    Raman claims that the population mean height of male giraffes in the region is less than 5.9 metres.
  2. Test at the \(2.5 \%\) significance level whether this sample provides sufficient evidence to support Raman's claim.
CAIE Further Paper 4 2022 June Q6
10 marks Standard +0.3
6 A teacher at a large college gave a mathematical puzzle to all the students. The median time taken by a random sample of 24 students to complete the puzzle was 18.0 minutes. The students were then given practice in solving puzzles. Two weeks later, the students were given another mathematical puzzle of the same type as the first. The times, in minutes, taken by the random sample of 24 students to complete this puzzle are as follows.
18.217.516.415.120.526.519.223.2
17.918.825.819.917.716.217.316.6
17.120.120.312.616.021.422.718.4
The teacher claims that the practice has not made any difference to the average time taken to complete a puzzle of this type. Carry out a Wilcoxon signed-rank test, at the 10\% significance level, to test whether there is sufficient evidence to reject the teacher's claim.
If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 4 2022 June Q1
4 marks Standard +0.3
1 The times taken by members of a large quiz club to complete a challenge have a normal distribution with mean \(\mu\) minutes. The times, \(x\) minutes, are recorded for a random sample of 8 members of the club. The results are summarised as follows, where \(\bar { x }\) is the sample mean. $$\bar { x } = 33.8 \quad \sum ( x - \bar { x } ) ^ { 2 } = 94.5$$ Find a 95\% confidence interval for \(\mu\).
CAIE Further Paper 4 2022 June Q2
7 marks Standard +0.3
2 A scientist is investigating the size of shells at various beach locations. She selects four beach locations and takes a random sample of shells from each of these beaches. She classifies each shell as large or small. Her results are summarised in the following table.
\multirow{2}{*}{}Beach location
A\(B\)CDTotal
\multirow{2}{*}{Size of shell}Large68699681314
Small28556439186
Total96124160120500
Test, at the 10\% significance level, whether the size of shell is independent of the beach location.