Questions — AQA (3508 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA M1 2015 June Q3
7 marks Moderate -0.3
3 A ship has a mass of 500 tonnes. Two tugs are used to pull the ship using cables that are horizontal. One tug exerts a force of 100000 N at an angle of \(25 ^ { \circ }\) to the centre line of the ship. The other tug exerts a force of \(T \mathrm {~N}\) at an angle of \(20 ^ { \circ }\) to the centre line of the ship. The diagram shows the ship and forces as viewed from above.
\includegraphics[max width=\textwidth, alt={}, center]{01338c87-302c-420f-a473-39b0796ccaed-06_279_844_539_664} The ship accelerates in a straight line along its centre line.
  1. \(\quad\) Find \(T\).
  2. A resistance force of magnitude 20000 N directly opposes the motion of the ship. Find the acceleration of the ship.
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{01338c87-302c-420f-a473-39b0796ccaed-06_1419_1714_1288_153}
AQA M1 2015 June Q4
10 marks Moderate -0.8
4 A particle moves with constant acceleration between the points \(A\) and \(B\). At \(A\), it has velocity \(( 4 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). At \(B\), it has velocity \(( 7 \mathbf { i } + 6 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). It takes 10 seconds to move from \(A\) to \(B\).
  1. Find the acceleration of the particle.
  2. Find the distance between \(A\) and \(B\).
  3. Find the average velocity as the particle moves from \(A\) to \(B\).
AQA M1 2015 June Q5
16 marks Standard +0.3
5 A block, of mass \(3 m\), is placed on a horizontal surface at a point \(A\). A light inextensible string is attached to the block and passes over a smooth peg. The string is horizontal between the block and the peg. A particle, of mass \(2 m\), is attached to the other end of the string. The block is released from rest with the string taut and the string between the peg and the particle vertical, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{01338c87-302c-420f-a473-39b0796ccaed-10_170_726_536_657} Assume that there is no air resistance acting on either the block or the particle, and that the size of the block is negligible. The horizontal surface is smooth between the points \(A\) and \(B\), but rough between the points \(B\) and \(C\). Between \(B\) and \(C\), the coefficient of friction between the block and the surface is 0.8 .
  1. By forming equations of motion for both the block and the particle, find the acceleration of the block between \(A\) and \(B\).
  2. Given that the distance between the points \(A\) and \(B\) is 1.2 metres, find the speed of the block when it reaches \(B\).
  3. By forming equations of motion for both the block and the particle, find the acceleration of the block between \(B\) and \(C\).
  4. Given that the distance between the points \(B\) and \(C\) is 0.9 metres, find the speed of the block when it reaches \(C\).
  5. Explain why it is important to assume that the size of the block is negligible.
    [0pt] [1 mark]
AQA M1 2015 June Q6
12 marks Standard +0.3
6 Emma is in a park with her dog, Roxy. Emma throws a ball and Roxy catches it in her mouth. The ground in the park is horizontal. Emma throws the ball from a point at a height of 1.2 metres above the ground and Roxy catches the ball when it is at a height of 0.5 metres above the ground. Emma throws the ball with an initial velocity of \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(30 ^ { \circ }\) above the horizontal.
  1. Find the time that the ball takes to travel from Emma's hand to Roxy's mouth.
  2. Find the horizontal distance travelled by the ball during its flight.
  3. During the flight, the speed of the ball is a maximum when it is at a height of \(h\) metres above the ground. Write down the value of \(h\).
  4. Find the maximum speed of the ball during its flight.
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{01338c87-302c-420f-a473-39b0796ccaed-14_1566_1707_1137_153}
AQA M1 2015 June Q7
11 marks Standard +0.3
7 Two forces, which act in a vertical plane, are applied to a crate. The crate has mass 50 kg , and is initially at rest on a rough horizontal surface. One force has magnitude 80 N and acts at an angle of \(30 ^ { \circ }\) to the horizontal and the other has magnitude 40 N and acts at an angle of \(20 ^ { \circ }\) to the horizontal. The forces are shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{01338c87-302c-420f-a473-39b0796ccaed-16_241_999_493_523} The coefficient of friction between the crate and the surface is 0.6 . Model the crate as a particle.
  1. Draw a diagram to show the forces acting on the crate.
  2. Find the magnitude of the normal reaction force acting on the crate.
  3. Does the crate start to move when the two forces are applied to the crate? Show all your working.
  4. State one aspect of the possible motion of the crate that is ignored by modelling it as a particle.
    [0pt] [1 mark]
AQA M1 2015 June Q8
11 marks Standard +0.3
8 Two trains, \(A\) and \(B\), are moving on straight horizontal tracks which run alongside each other and are parallel. The trains both move with constant acceleration. At time \(t = 0\), the fronts of the trains pass a signal. The velocities of the trains are shown in the graph below.
\includegraphics[max width=\textwidth, alt={}, center]{01338c87-302c-420f-a473-39b0796ccaed-18_633_1077_475_424}
  1. Find the distance between the fronts of the two trains when they have the same velocity and state which train has travelled further from the signal.
  2. Find the time when \(A\) has travelled 9 metres further than \(B\).
    \includegraphics[max width=\textwidth, alt={}]{01338c87-302c-420f-a473-39b0796ccaed-20_2288_1707_221_153}
AQA M1 2016 June Q2
3 marks Moderate -0.8
2 Three forces \(( 4 \mathbf { i } + 7 \mathbf { j } ) \mathrm { N } , ( p \mathbf { i } + 5 \mathbf { j } ) \mathrm { N }\) and \(( - 8 \mathbf { i } + q \mathbf { j } ) \mathrm { N }\) act on a particle of mass 5 kg to produce an acceleration of \(( 2 \mathbf { i } - \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 2 }\). No other forces act on the particle.
  1. Find the resultant force acting on the particle in terms of \(p\) and \(q\).
  2. \(\quad\) Find \(p\) and \(q\).
  3. Given that the particle is initially at rest, find the displacement of the particle from its initial position when these forces have been acting for 4 seconds.
    [0pt] [3 marks]
AQA M1 2016 June Q3
4 marks Moderate -0.8
3 A toy car is placed at the top of a ramp. After the car has been released from rest, it travels a distance of 1.08 metres down the ramp, in a time of 1.2 seconds. Assume that there is no resistance to the motion of the car.
  1. Find the magnitude of the acceleration of the car while it is moving down the ramp.
  2. Find the speed of the car, when it has travelled 1.08 metres down the ramp.
  3. Find the angle between the ramp and the horizontal, giving your answer to the nearest degree.
    [0pt] [4 marks]
AQA M1 2016 June Q4
3 marks Moderate -0.8
4 An aeroplane is flying in air that is moving due east at \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Relative to the air, the aeroplane has a velocity of \(90 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) due north. During a 20 second period, the motion of the air causes the aeroplane to move 240 metres to the east.
  1. \(\quad\) Find \(V\).
  2. Find the magnitude of the resultant velocity of the aeroplane.
  3. Find the direction of the resultant velocity, giving your answer as a three-figure bearing, correct to the nearest degree.
    [0pt] [3 marks]
AQA M1 2016 June Q5
4 marks Moderate -0.3
5 Two particles, of masses 3 kg and 7 kg , are connected by a light inextensible string that passes over a smooth peg. The 3 kg particle is held at ground level with the string above it taut and vertical. The 7 kg particle is at a height of 80 cm above ground level, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{5dd17095-18a6-470b-a24a-4456c8e3ed31-10_469_600_486_721} The 3 kg particle is then released from rest.
  1. By forming two equations of motion, show that the magnitude of the acceleration of the particles is \(3.92 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. Find the speed of the 7 kg particle just before it hits the ground.
  3. When the 7 kg particle hits the ground, the string becomes slack and in the subsequent motion the 3 kg particle does not hit the peg. Find the maximum height of the 3 kg particle above the ground.
    [0pt] [4 marks]
AQA M1 2016 June Q6
6 marks Standard +0.3
6 A floor polisher consists of a heavy metal block with a polishing cloth attached to the underside. A light rod is also attached to the block and is used to push the block across the floor that is to be polished. The block has mass 5 kg . Assume that the floor is horizontal. Model the block as a particle. The coefficient of friction between the cloth and the floor is 0.2 .
A person pushes the rod to exert a force on the block. The force is at an angle of \(60 ^ { \circ }\) to the horizontal and the block accelerates at \(0.9 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). The diagram shows the block and the force exerted by the rod in this situation.
\includegraphics[max width=\textwidth, alt={}, center]{5dd17095-18a6-470b-a24a-4456c8e3ed31-14_309_205_772_1009} The rod exerts a force of magnitude \(T\) newtons on the block.
  1. Find, in terms of \(T\), the magnitude of the normal reaction force acting on the block.
  2. \(\quad\) Find \(T\).
    [0pt] [6 marks]
AQA M1 2016 June Q7
11 marks Moderate -0.3
7 At a school fair, there is a competition in which people try to kick a football so that it lands in a large rectangular box. The height of the top of the box is 1 metre and its width is 3 metres. One student kicks a football so that it initially moves at \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(50 ^ { \circ }\) above the horizontal. It hits the top front edge of the box, as shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{5dd17095-18a6-470b-a24a-4456c8e3ed31-16_465_1342_625_351} Model the football as a particle that is not subject to any resistance forces as it moves.
  1. Find the time taken for the football to move from the point where it was kicked to the box.
  2. Find the horizontal distance from the point where the football is kicked to the front of the box.
  3. If the same student kicks the football at the same angle from the same initial position, what is the speed at which the student should kick the football if it is to hit the top back edge of the box?
  4. Explain the significance of modelling the football as a particle in this context.
    [0pt] [1 mark]
    \includegraphics[max width=\textwidth, alt={}]{5dd17095-18a6-470b-a24a-4456c8e3ed31-23_2488_1709_219_153}
    \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}
AQA M2 2006 January Q1
8 marks Moderate -0.8
1 A stone, of mass 0.4 kg , is thrown vertically upwards with a speed of \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from a point at a height of 6 metres above ground level.
  1. Calculate the initial kinetic energy of the stone.
    1. Show that the kinetic energy of the stone when it hits the ground is 36.3 J , correct to three significant figures.
    2. Hence find the speed at which the stone hits the ground.
    3. State one assumption that you have made.
AQA M2 2006 January Q2
7 marks Moderate -0.8
2 A particle, of mass 2 kg , is attached to one end of a light inextensible string. The other end is fixed to the point \(O\). The particle is set into motion, so that it describes a horizontal circle of radius 0.6 metres, with the string at an angle of \(30 ^ { \circ }\) to the vertical. The centre of the circle is vertically below \(O\).
\includegraphics[max width=\textwidth, alt={}, center]{6a49fdd7-f180-451c-8f37-ad764fe13dfd-2_344_340_1418_842}
  1. Show that the tension in the string is 22.6 N , correct to three significant figures.
  2. Find the speed of the particle.
AQA M2 2006 January Q3
9 marks Moderate -0.3
3 A particle moves in a straight line and at time \(t\) has velocity \(v\), where $$v = 2 t - 12 \mathrm { e } ^ { - t } , \quad t \geqslant 0$$
    1. Find an expression for the acceleration of the particle at time \(t\).
    2. State the range of values of the acceleration of the particle.
  1. When \(t = 0\), the particle is at the origin. Find an expression for the displacement of the particle from the origin at time \(t\).
AQA M2 2006 January Q4
10 marks Standard +0.3
4 The diagram shows a uniform lamina \(A B C D E F G H\).
\includegraphics[max width=\textwidth, alt={}, center]{6a49fdd7-f180-451c-8f37-ad764fe13dfd-3_346_933_1123_577}
  1. Explain why the centre of mass is 25 cm from \(A H\).
  2. Show that the centre of mass is 4.375 cm from \(H G\).
  3. The lamina is freely suspended from \(A\). Find the angle between \(A B\) and the vertical when the lamina is in equilibrium.
  4. Explain, briefly, how you have used the fact that the lamina is uniform.
AQA M2 2006 January Q5
8 marks Moderate -0.3
5 A particle moves such that at time \(t\) seconds its acceleration is given by $$( 2 \cos t \mathbf { i } - 5 \sin t \mathbf { j } ) \mathrm { m } \mathrm {~s} ^ { - 2 }$$
  1. The mass of the particle is 6 kg . Find the magnitude of the resultant force on the particle when \(t = 0\).
  2. When \(t = 0\), the velocity of the particle is \(( 2 \mathbf { i } + 10 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). Find an expression for the velocity of the particle at time \(t\).
AQA M2 2006 January Q6
10 marks Standard +0.3
6 A student is modelling the motion of a small boat as it moves on a lake. When the speed of the boat is \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the engine is switched off. At time \(t\) seconds later, it has a velocity of \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and experiences a resistance force of magnitude \(20 v\) newtons. The mass of the boat is 80 kg . To set up a simple model for the motion of the boat, the student assumes that the water in the lake is still and that the boat travels in a straight line.
  1. Explain how these two assumptions allow the student to create a simple model.
  2. State one other assumption that the student should make.
    1. Express \(\frac { \mathrm { d } v } { \mathrm {~d} t }\) in terms of \(v\).
    2. Find an expression for \(v\) in terms of \(t\).
AQA M2 2006 January Q7
9 marks Standard +0.3
7 A particle \(P\), of mass \(m \mathrm {~kg}\), is placed at the point \(Q\) on the top of a smooth upturned hemisphere of radius 3 metres and centre \(O\). The plane face of the hemisphere is fixed to a horizontal table. The particle is set into motion with an initial horizontal velocity of \(2 \mathrm {~ms} ^ { - 1 }\). When the particle is on the surface of the hemisphere, the angle between \(O P\) and \(O Q\) is \(\theta\) and the particle has speed \(v \mathrm {~ms} ^ { - 1 }\).
\includegraphics[max width=\textwidth, alt={}, center]{6a49fdd7-f180-451c-8f37-ad764fe13dfd-4_415_1007_1573_513}
  1. Show that \(v ^ { 2 } = 4 + 6 g ( 1 - \cos \theta )\).
  2. Find the value of \(\theta\) when the particle leaves the hemisphere.
AQA M2 2006 January Q8
14 marks Standard +0.3
8 A particle, of mass 10 kg , is attached to one end of a light elastic string of natural length 0.4 metres and modulus of elasticity 100 N . The other end of the string is fixed to the point \(O\).
  1. Find the length of the elastic string when the particle hangs in equilibrium directly below \(O\).
  2. The particle is pulled down and held at a point \(P\), which is 1 metre vertically below \(O\). Show that the elastic potential energy of the string when the particle is in this position is 45 J .
  3. The particle is released from rest at the point \(P\). In the subsequent motion, the particle has speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when it is \(x\) metres below \(\boldsymbol { O }\).
    1. Show that, while the string is taut, $$v ^ { 2 } = 39.6 x - 25 x ^ { 2 } - 14.6$$
    2. Find the value of \(x\) when the particle comes to rest for the first time after being released, given that the string is still taut.
AQA M2 2008 January Q1
10 marks Moderate -0.8
1 A ball is thrown vertically upwards from ground level with an initial speed of \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The ball has a mass of 0.6 kg . Assume that the only force acting on the ball after it is thrown is its weight.
  1. Calculate the initial kinetic energy of the ball.
  2. By using conservation of energy, find the maximum height above ground level reached by the ball.
  3. By using conservation of energy, find the kinetic energy and the speed of the ball when it is at a height of 3 m above ground level.
  4. State one modelling assumption which has been made.
AQA M2 2008 January Q2
8 marks Moderate -0.8
2 A particle moves in a straight line and at time \(t\) it has velocity \(v\), where $$v = 3 t ^ { 2 } - 2 \sin 3 t + 6$$
    1. Find an expression for the acceleration of the particle at time \(t\).
    2. When \(t = \frac { \pi } { 3 }\), show that the acceleration of the particle is \(2 \pi + 6\).
  1. When \(t = 0\), the particle is at the origin. Find an expression for the displacement of the particle from the origin at time \(t\).
AQA M2 2008 January Q3
11 marks Standard +0.3
3 A uniform ladder of length 4 metres and mass 20 kg rests in equilibrium with its foot, \(A\), on a rough horizontal floor and its top leaning against a smooth vertical wall. The vertical plane containing the ladder is perpendicular to the wall and the angle between the ladder and the floor is \(60 ^ { \circ }\). A man of mass 80 kg is standing at point \(C\) on the ladder. With the man in this position, the ladder is on the point of slipping. The coefficient of friction between the ladder and the floor is 0.4 . The man may be modelled as a particle at \(C\).
\includegraphics[max width=\textwidth, alt={}, center]{1bc18163-b20e-4dc6-bd35-496efec8dc73-3_567_448_708_788}
  1. Draw a diagram to show the forces acting on the ladder.
  2. Show that the magnitude of the frictional force between the ladder and the ground is 392 N .
  3. Find the distance \(A C\).
AQA M2 2008 January Q4
9 marks Standard +0.3
4 A particle moves in a horizontal plane under the action of a single force, \(\mathbf { F }\) newtons. The unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are directed east and north respectively. At time \(t\) seconds, the position vector, \(\mathbf { r }\) metres, of the particle is given by $$\mathbf { r } = \left( t ^ { 3 } - 3 t ^ { 2 } + 4 \right) \mathbf { i } + \left( 4 t + t ^ { 2 } \right) \mathbf { j }$$
  1. Find an expression for the velocity of the particle at time \(t\).
  2. The mass of the particle is 3 kg .
    1. Find an expression for \(\mathbf { F }\) at time \(t\).
    2. Find the magnitude of \(\mathbf { F }\) when \(t = 3\).
  3. Find the value of \(t\) when \(\mathbf { F }\) acts due north.
AQA M2 2008 January Q5
9 marks Standard +0.3
5 Two light inextensible strings, of lengths 0.4 m and 0.2 m , each have one end attached to a particle, \(P\), of mass 4 kg . The other ends of the strings are attached to the points \(A\) and \(B\) respectively. The point \(A\) is vertically above the point \(B\). The particle moves in a horizontal circle, centre \(B\) and radius 0.2 m , at a speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The particle and strings are shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{1bc18163-b20e-4dc6-bd35-496efec8dc73-4_396_558_587_735} $$\text { ← } 0.2 \mathrm {~m} \longrightarrow$$
  1. Calculate the magnitude of the acceleration of the particle.
  2. Show that the tension in string \(P A\) is 45.3 N , correct to three significant figures.
  3. Find the tension in string \(P B\).