Questions — AQA C4 (160 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA C4 2008 June Q7
7 The coordinates of the points \(A\) and \(B\) are ( \(3 , - 2,1\) ) and ( \(5,3,0\) ) respectively. The line \(l\) has equation \(\mathbf { r } = \left[ \begin{array} { l } 5
3
0 \end{array} \right] + \lambda \left[ \begin{array} { r } 1
0
- 3 \end{array} \right]\).
  1. Find the distance between \(A\) and \(B\).
  2. Find the acute angle between the lines \(A B\) and \(l\). Give your answer to the nearest degree.
  3. The points \(B\) and \(C\) lie on \(l\) such that the distance \(A C\) is equal to the distance \(A B\). Find the coordinates of \(C\).
AQA C4 2008 June Q8
8
  1. The number of fish in a lake is decreasing. After \(t\) years, there are \(x\) fish in the lake. The rate of decrease of the number of fish is proportional to the number of fish currently in the lake.
    1. Formulate a differential equation, in the variables \(x\) and \(t\) and a constant of proportionality \(k\), where \(k > 0\), to model the rate at which the number of fish in the lake is decreasing.
    2. At a certain time, there were 20000 fish in the lake and the rate of decrease was 500 fish per year. Find the value of \(k\).
  2. The equation $$P = 2000 - A \mathrm { e } ^ { - 0.05 t }$$ is proposed as a model for the number of fish, \(P\), in another lake, where \(t\) is the time in years and \(A\) is a positive constant. On 1 January 2008, a biologist estimated that there were 700 fish in this lake.
    1. Taking 1 January 2008 as \(t = 0\), find the value of \(A\).
    2. Hence find the year during which, according to this model, the number of fish in this lake will first exceed 1900.
AQA C4 2009 June Q1
1
  1. Use the Remainder Theorem to find the remainder when \(3 x ^ { 3 } + 8 x ^ { 2 } - 3 x - 5\) is divided by \(3 x - 1\).
  2. Express \(\frac { 3 x ^ { 3 } + 8 x ^ { 2 } - 3 x - 5 } { 3 x - 1 }\) in the form \(a x ^ { 2 } + b x + \frac { c } { 3 x - 1 }\), where \(a , b\) and \(c\) are integers.
AQA C4 2009 June Q2
2 A curve is defined by the parametric equations $$x = \frac { 1 } { t } , \quad y = t + \frac { 1 } { 2 t }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find an equation of the normal to the curve at the point where \(t = 1\).
  3. Show that the cartesian equation of the curve can be written in the form $$x ^ { 2 } - 2 x y + k = 0$$ where \(k\) is an integer.
AQA C4 2009 June Q3
3
  1. Find the binomial expansion of \(( 1 - x ) ^ { - 1 }\) up to and including the term in \(x ^ { 2 }\).
    1. Express \(\frac { 3 x - 1 } { ( 1 - x ) ( 2 - 3 x ) }\) in the form \(\frac { A } { 1 - x } + \frac { B } { 2 - 3 x }\), where \(A\) and \(B\) are integers.
    2. Find the binomial expansion of \(\frac { 3 x - 1 } { ( 1 - x ) ( 2 - 3 x ) }\) up to and including the term in \(x ^ { 2 }\).
  2. Find the range of values of \(x\) for which the binomial expansion of \(\frac { 3 x - 1 } { ( 1 - x ) ( 2 - 3 x ) }\) is valid.
AQA C4 2009 June Q4
4 A car depreciates in value according to the model $$V = A k ^ { t }$$ where \(\pounds V\) is the value of the car \(t\) months from when it was new, and \(A\) and \(k\) are constants. Its value when new was \(\pounds 12499\) and 36 months later its value was \(\pounds 7000\).
    1. Write down the value of \(A\).
    2. Show that the value of \(k\) is 0.984025 , correct to six decimal places.
  1. The value of this car first dropped below \(\pounds 5000\) during the \(n\)th month from new. Find the value of \(n\).
AQA C4 2009 June Q5
5 A curve is defined by the equation \(4 x ^ { 2 } + y ^ { 2 } = 4 + 3 x y\).
Find the gradient at the point ( 1,3 ) on this curve.
AQA C4 2009 June Q6
6
    1. Show that the equation \(3 \cos 2 x + 7 \cos x + 5 = 0\) can be written in the form \(a \cos ^ { 2 } x + b \cos x + c = 0\), where \(a , b\) and \(c\) are integers.
    2. Hence find the possible values of \(\cos x\).
    1. Express \(7 \sin \theta + 3 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(\alpha\) is an acute angle. Give your value of \(\alpha\) to the nearest \(0.1 ^ { \circ }\).
    2. Hence solve the equation \(7 \sin \theta + 3 \cos \theta = 4\) for all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\), giving \(\theta\) to the nearest \(0.1 ^ { \circ }\).
    1. Given that \(\beta\) is an acute angle and that \(\tan \beta = 2 \sqrt { 2 }\), show that \(\cos \beta = \frac { 1 } { 3 }\).
    2. Hence show that \(\sin 2 \beta = p \sqrt { 2 }\), where \(p\) is a rational number.
AQA C4 2009 June Q7
7 The points \(A\) and \(B\) have coordinates ( \(3 , - 2,5\) ) and ( \(4,0,1\) ) respectively. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } 6
- 1
5 \end{array} \right] + \lambda \left[ \begin{array} { r } 2
- 1
4 \end{array} \right]\).
  1. Find the distance between the points \(A\) and \(B\).
  2. Verify that \(B\) lies on \(l _ { 1 }\).
    (2 marks)
  3. The line \(l _ { 2 }\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 3
    - 2
    5 \end{array} \right] + \mu \left[ \begin{array} { r } - 1
    3
    - 8 \end{array} \right]\). The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(C\). Show that the points \(A , B\) and \(C\) form an isosceles triangle.
    (6 marks)
AQA C4 2009 June Q8
8
  1. Solve the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 150 \cos 2 t } { x }$$ given that \(x = 20\) when \(t = \frac { \pi } { 4 }\), giving your solution in the form \(x ^ { 2 } = \mathrm { f } ( t )\). (6 marks)
  2. The oscillations of a 'baby bouncy cradle' are modelled by the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 150 \cos 2 t } { x }$$ where \(x \mathrm {~cm}\) is the height of the cradle above its base \(t\) seconds after the cradle begins to oscillate. Given that the cradle is 20 cm above its base at time \(t = \frac { \pi } { 4 }\) seconds, find:
    1. the height of the cradle above its base 13 seconds after it starts oscillating, giving your answer to the nearest millimetre;
    2. the time at which the cradle will first be 11 cm above its base, giving your answer to the nearest tenth of a second.
      (2 marks)