Convert to quadratic in sin/cos

Show that an equation can be expressed as a quadratic in sin θ or cos θ, then solve it.

81 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
Edexcel C12 2019 June Q12
8 marks Standard +0.3
12. (a) Show that $$\frac { 2 + \cos x } { 3 + \sin ^ { 2 } x } = \frac { 4 } { 7 }$$ may be expressed in the form $$a \cos ^ { 2 } x + b \cos x + c = 0$$ where \(a , b\) and \(c\) are constants to be found.
(b) Hence solve, for \(0 \leqslant x < 2 \pi\), the equation $$\frac { 2 + \cos x } { 3 + \sin ^ { 2 } x } = \frac { 4 } { 7 }$$ giving your answers in radians to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.) \includegraphics[max width=\textwidth, alt={}, center]{de511cb3-35c7-4225-b459-a136b6304b78-37_81_65_2640_1886}
Edexcel C12 2016 October Q10
8 marks Standard +0.3
10. (a) Given that $$8 \tan x = - 3 \cos x$$ show that $$3 \sin ^ { 2 } x - 8 \sin x - 3 = 0$$ (b) Hence solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), $$8 \tan 2 \theta = - 3 \cos 2 \theta$$ giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.) \includegraphics[max width=\textwidth, alt={}, center]{53865e15-3838-4551-b507-fe49549b87db-29_124_37_2615_1882}
Edexcel C12 2018 October Q12
8 marks Standard +0.3
12. (a) Show that the equation $$6 \cos x - 5 \tan x = 0$$ may be expressed in the form $$6 \sin ^ { 2 } x + 5 \sin x - 6 = 0$$ (b) Hence solve for \(0 \leqslant \theta < 360 ^ { \circ }\) $$6 \cos \left( 2 \theta - 10 ^ { \circ } \right) - 5 \tan \left( 2 \theta - 10 ^ { \circ } \right) = 0$$ giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel P2 2023 June Q9
7 marks Standard +0.3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that $$3 \cos \theta ( \tan \theta \sin \theta + 3 ) = 11 - 5 \cos \theta$$ may be written as $$3 \cos ^ { 2 } \theta - 14 \cos \theta + 8 = 0$$
  2. Hence solve, for \(0 < x < 360 ^ { \circ }\) $$3 \cos 2 x ( \tan 2 x \sin 2 x + 3 ) = 11 - 5 \cos 2 x$$ giving your answers to one decimal place.
Edexcel C2 2005 January Q4
7 marks Moderate -0.3
4. (a) Show that the equation $$5 \cos ^ { 2 } x = 3 ( 1 + \sin x )$$ can be written as $$5 \sin ^ { 2 } x + 3 \sin x - 2 = 0 .$$ (b) Hence solve, for \(0 \leqslant x < 360 ^ { \circ }\), the equation $$5 \cos ^ { 2 } x = 3 ( 1 + \sin x )$$ giving your answers to 1 decimal place where appropriate.
Edexcel C2 2007 January Q6
6 marks Standard +0.3
6. Find all the solutions, in the interval \(0 \leqslant x < 2 \pi\), of the equation $$2 \cos ^ { 2 } x + 1 = 5 \sin x$$ giving each solution in terms of \(\pi\).
Edexcel C2 2008 January Q4
9 marks Moderate -0.8
4. (a) Show that the equation $$3 \sin ^ { 2 } \theta - 2 \cos ^ { 2 } \theta = 1$$ can be written as $$5 \sin ^ { 2 } \theta = 3$$ (b) Hence solve, for \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\), the equation $$3 \sin ^ { 2 } \theta - 2 \cos ^ { 2 } \theta = 1$$ giving your answers to 1 decimal place.
Edexcel C2 2009 January Q8
8 marks Moderate -0.3
8. (a) Show that the equation $$4 \sin ^ { 2 } x + 9 \cos x - 6 = 0$$ can be written as $$4 \cos ^ { 2 } x - 9 \cos x + 2 = 0$$ (b) Hence solve, for \(0 \leqslant x < 720 ^ { \circ }\), $$4 \sin ^ { 2 } x + 9 \cos x - 6 = 0$$ giving your answers to 1 decimal place.
Edexcel C2 2010 January Q2
6 marks Moderate -0.3
2. (a) Show that the equation $$5 \sin x = 1 + 2 \cos ^ { 2 } x$$ can be written in the form $$2 \sin ^ { 2 } x + 5 \sin x - 3 = 0$$ (b) Solve, for \(0 \leqslant x < 360 ^ { \circ }\), $$2 \sin ^ { 2 } x + 5 \sin x - 3 = 0$$
Edexcel C2 2011 January Q7
7 marks Moderate -0.3
  1. (a) Show that the equation
$$3 \sin ^ { 2 } x + 7 \sin x = \cos ^ { 2 } x - 4$$ can be written in the form $$4 \sin ^ { 2 } x + 7 \sin x + 3 = 0$$ (b) Hence solve, for \(0 \leqslant x < 360 ^ { \circ }\), $$3 \sin ^ { 2 } x + 7 \sin x = \cos ^ { 2 } x - 4$$ giving your answers to 1 decimal place where appropriate.
Edexcel C2 2014 January Q9
9 marks Standard +0.3
9. (a) Show that the equation $$5 \sin x - \cos ^ { 2 } x + 2 \sin ^ { 2 } x = 1$$ can be written in the form $$3 \sin ^ { 2 } x + 5 \sin x - 2 = 0$$ (b) Hence solve, for \(- 180 ^ { \circ } \leqslant \theta < 180 ^ { \circ }\), the equation $$5 \sin 2 \theta - \cos ^ { 2 } 2 \theta + 2 \sin ^ { 2 } 2 \theta = 1$$ giving your answers to 2 decimal places.
Edexcel C2 2017 June Q8
8 marks Moderate -0.3
8. (a) Show that the equation $$\cos ^ { 2 } x = 8 \sin ^ { 2 } x - 6 \sin x$$ can be written in the form $$( 3 \sin x - 1 ) ^ { 2 } = 2$$ (b) Hence solve, for \(0 \leqslant x < 360 ^ { \circ }\), $$\cos ^ { 2 } x = 8 \sin ^ { 2 } x - 6 \sin x$$ giving your answers to 2 decimal places.
Edexcel C2 Specimen Q4
7 marks Standard +0.3
4. Solve, for \(0 \leq x < 360 ^ { \circ }\), the equation \(3 \sin ^ { 2 } x = 1 + \cos x\), giving your answers to the nearest degree.
OCR C2 2005 January Q5
8 marks Moderate -0.3
5
  1. Prove that the equation $$\sin \theta \tan \theta = \cos \theta + 1$$ can be expressed in the form $$2 \cos ^ { 2 } \theta + \cos \theta - 1 = 0$$
  2. Hence solve the equation $$\sin \theta \tan \theta = \cos \theta + 1$$ giving all values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR C2 2007 June Q5
7 marks Moderate -0.3
5
  1. Show that the equation $$3 \cos ^ { 2 } \theta = \sin \theta + 1$$ can be expressed in the form $$3 \sin ^ { 2 } \theta + \sin \theta - 2 = 0$$
  2. Hence solve the equation $$3 \cos ^ { 2 } \theta = \sin \theta + 1 ,$$ giving all values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR C2 Specimen Q5
8 marks Moderate -0.3
5
  1. Show that the equation \(15 \cos ^ { 2 } \theta ^ { \circ } = 13 + \sin \theta ^ { \circ }\) may be written as a quadratic equation in \(\sin \theta ^ { \circ }\).
  2. Hence solve the equation, giving all values of \(\theta\) such that \(0 \leqslant \theta \leqslant 360\).
OCR MEI C2 2007 June Q8
5 marks Moderate -0.8
8
  1. Show that the equation \(2 \cos ^ { 2 } \theta + 7 \sin \theta = 5\) may be written in the form $$2 \sin ^ { 2 } \theta - 7 \sin \theta + 3 = 0$$
  2. By factorising this quadratic equation, solve the equation for values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\). Section B (36 marks)
OCR MEI C2 2009 June Q7
5 marks Moderate -0.8
7 Show that the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) may be written in the form $$4 \sin ^ { 2 } \theta - \sin \theta = 0$$ Hence solve the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C2 Q5
5 marks Moderate -0.3
5
  1. Express \(2 \sin ^ { 2 } \theta + 3 \cos \theta\) as a quadratic function of \(\cos \theta\).
  2. Hence solve the equation \(2 \sin ^ { 2 } \theta + 3 \cos \theta = 3\), giving all values of \(\theta\) correct to the nearest degree in the range \(0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }\).
OCR C2 Q3
7 marks Moderate -0.3
3. (i) Show that the equation $$3 \cos ^ { 2 } x ^ { \circ } + \sin ^ { 2 } x ^ { \circ } + 5 \sin x ^ { \circ } = 0$$ can be written as a quadratic equation in \(\sin \chi ^ { \circ }\).
(ii) Hence solve, for \(0 \leq x < 360\), the equation $$3 \cos ^ { 2 } x ^ { \circ } + \sin ^ { 2 } x ^ { \circ } + 5 \sin x ^ { \circ } = 0$$
OCR C2 Q5
8 marks Moderate -0.3
  1. (i) Given that
$$8 \tan x - 3 \cos x = 0$$ show that $$3 \sin ^ { 2 } x + 8 \sin x - 3 = 0$$ (ii) Find, to 2 decimal places, the values of \(x\) in the interval \(0 \leq x \leq 2 \pi\) such that $$8 \tan x - 3 \cos x = 0$$
OCR C2 Q4
7 marks Moderate -0.3
4. Solve the equation $$\sin ^ { 2 } \theta = 4 \cos \theta$$ for values of \(\theta\) in the interval \(0 \leq \theta \leq 360 ^ { \circ }\). Give your answers to 1 decimal place.
OCR MEI C2 Q1
5 marks Moderate -0.3
1 Show that the equation \(\sin ^ { 2 } x = 3 \cos x - 2\) can be expressed as a quadratic equation in \(\cos x\) and hence solve the equation for values of \(x\) between 0 and \(2 \pi\).
OCR MEI C2 Q8
5 marks Moderate -0.3
8 Show that the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) may be written in the form $$4 \sin ^ { 2 } \theta - \sin \theta = 0$$ Hence solve the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C2 Q9
5 marks Standard +0.3
9 Showing your method, solve the equation \(2 \sin ^ { 2 } \theta = \cos \theta + 2\) for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).