Edexcel
C12
2019
June
Q12
8 marks
Standard +0.3
12. (a) Show that
$$\frac { 2 + \cos x } { 3 + \sin ^ { 2 } x } = \frac { 4 } { 7 }$$
may be expressed in the form
$$a \cos ^ { 2 } x + b \cos x + c = 0$$
where \(a , b\) and \(c\) are constants to be found.
(b) Hence solve, for \(0 \leqslant x < 2 \pi\), the equation
$$\frac { 2 + \cos x } { 3 + \sin ^ { 2 } x } = \frac { 4 } { 7 }$$
giving your answers in radians to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
\includegraphics[max width=\textwidth, alt={}, center]{de511cb3-35c7-4225-b459-a136b6304b78-37_81_65_2640_1886}
Edexcel
C12
2016
October
Q10
8 marks
Standard +0.3
10. (a) Given that
$$8 \tan x = - 3 \cos x$$
show that
$$3 \sin ^ { 2 } x - 8 \sin x - 3 = 0$$
(b) Hence solve, for \(0 \leqslant \theta < 360 ^ { \circ }\),
$$8 \tan 2 \theta = - 3 \cos 2 \theta$$
giving your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
\includegraphics[max width=\textwidth, alt={}, center]{53865e15-3838-4551-b507-fe49549b87db-29_124_37_2615_1882}