| Exam Board | Edexcel |
| Module | C12 (Core Mathematics 1 & 2) |
| Year | 2019 |
| Session | June |
| Topic | Trig Equations |
12. (a) Show that
$$\frac { 2 + \cos x } { 3 + \sin ^ { 2 } x } = \frac { 4 } { 7 }$$
may be expressed in the form
$$a \cos ^ { 2 } x + b \cos x + c = 0$$
where \(a , b\) and \(c\) are constants to be found.
(b) Hence solve, for \(0 \leqslant x < 2 \pi\), the equation
$$\frac { 2 + \cos x } { 3 + \sin ^ { 2 } x } = \frac { 4 } { 7 }$$
giving your answers in radians to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
\includegraphics[max width=\textwidth, alt={}, center]{de511cb3-35c7-4225-b459-a136b6304b78-37_81_65_2640_1886}