Convert to quadratic in sin/cos

Show that an equation can be expressed as a quadratic in sin θ or cos θ, then solve it.

81 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
OCR MEI C2 Q10
5 marks Moderate -0.3
10
  1. Show that the equation \(2 \cos ^ { 2 } \theta + 7 \sin \theta = 5\) may be written in the form $$2 \sin ^ { 2 } \theta - 7 \sin \theta + 3 = 0$$
  2. By factorising this quadratic equation, solve the equation for values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\). [4]
OCR MEI C2 Q3
5 marks Moderate -0.3
3 Show that the equation \(4 \cos ^ { 2 } \theta = 1 + \sin \theta\) can be expressed as $$4 \sin ^ { 2 } \theta + \sin \theta - 3 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q4
5 marks Standard +0.3
4 Showing your method clearly, solve the equation $$5 \sin ^ { 2 } \theta = 5 + \cos \theta \quad \text { for } 0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ } .$$
OCR C2 2010 January Q1
6 marks Moderate -0.3
1
  1. Show that the equation $$2 \sin ^ { 2 } x = 5 \cos x - 1$$ can be expressed in the form $$2 \cos ^ { 2 } x + 5 \cos x - 3 = 0$$
  2. Hence solve the equation $$2 \sin ^ { 2 } x = 5 \cos x - 1$$ giving all values of \(x\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR C2 2012 June Q4
6 marks Moderate -0.3
4 Solve the equation $$4 \cos ^ { 2 } x + 7 \sin x - 7 = 0$$ giving all values of \(x\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
OCR MEI C2 2011 January Q8
5 marks Moderate -0.3
8 Showing your method clearly, solve the equation $$5 \sin ^ { 2 } \theta = 5 + \cos \theta \quad \text { for } 0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ } .$$
OCR MEI C2 2012 January Q8
5 marks Moderate -0.8
8 Show that the equation \(4 \cos ^ { 2 } \theta = 1 + \sin \theta\) can be expressed as $$4 \sin ^ { 2 } \theta + \sin \theta - 3 = 0 .$$ Hence solve the equation for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C2 2015 June Q7
5 marks Moderate -0.3
7 Show that the equation \(\sin ^ { 2 } x = 3 \cos x - 2\) can be expressed as a quadratic equation in \(\cos x\) and hence solve the equation for values of \(x\) between 0 and \(2 \pi\).
Edexcel AS Paper 1 2023 June Q12
9 marks Moderate -0.3
  1. In this question you must show detailed reasoning.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that the equation $$4 \tan x = 5 \cos x$$ can be written as $$5 \sin ^ { 2 } x + 4 \sin x - 5 = 0$$
  2. Hence solve, for \(0 < x \leqslant 360 ^ { \circ }\) $$4 \tan x = 5 \cos x$$ giving your answers to one decimal place.
  3. Hence find the number of solutions of the equation $$4 \tan 3 x = 5 \cos 3 x$$ in the interval \(0 < x \leqslant 1800 ^ { \circ }\), explaining briefly the reason for your answer.
Edexcel AS Paper 1 Specimen Q9
5 marks Standard +0.3
  1. Solve, for \(360 ^ { \circ } \leqslant x < 540 ^ { \circ }\),
$$12 \sin ^ { 2 } x + 7 \cos x - 13 = 0$$ Give your answers to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
(5)
OCR MEI AS Paper 1 2023 June Q4
5 marks Moderate -0.3
4 In this question you must show detailed reasoning.
Solve the equation \(6 \cos ^ { 2 } x + \sin x = 5\), giving all the roots in the interval \(- 180 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
OCR MEI AS Paper 2 2024 June Q14
6 marks Standard +0.3
14 In this question you must show detailed reasoning.
Solve the equation \(5 - \cos \theta - 6 \sin ^ { 2 } \theta = 0\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\). Turn over for question 15
AQA C2 2012 January Q8
10 marks Moderate -0.3
8
  1. Given that \(2 \sin \theta = 7 \cos \theta\), find the value of \(\tan \theta\).
    1. Use an appropriate identity to show that the equation $$6 \sin ^ { 2 } x = 4 + \cos x$$ can be written as $$6 \cos ^ { 2 } x + \cos x - 2 = 0$$
    2. Hence solve the equation \(6 \sin ^ { 2 } x = 4 + \cos x\) in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\), giving your answers to the nearest degree.
AQA C2 2015 June Q6
10 marks Moderate -0.3
6
  1. Solve the equation \(\sin ( x + 0.7 ) = 0.6\) in the interval \(- \pi < x < \pi\), giving your answers in radians to two significant figures.
  2. It is given that \(5 \cos ^ { 2 } \theta - \cos \theta = \sin ^ { 2 } \theta\).
    1. By forming and solving a suitable quadratic equation, find the possible values of \(\cos \theta\).
    2. Hence show that a possible value of \(\tan \theta\) is \(2 \sqrt { 2 }\).
Edexcel C2 Q3
8 marks Moderate -0.3
3. Find the values of \(\theta\), to 1 decimal place, in the interval \(- 180 \leq \theta < 180\) for which $$2 \sin ^ { 2 } \theta ^ { \circ } - 2 \sin \theta ^ { \circ } = \cos ^ { 2 } \theta ^ { \circ }$$ [P1 January 2002 Question 3]
Edexcel C2 Q6
8 marks Standard +0.3
6. Find, in degrees, the value of \(\theta\) in the interval \(0 \leq \theta < 360 ^ { \circ }\) for which $$2 \cos ^ { 2 } \theta - \cos \theta - 1 = \sin ^ { 2 } \theta$$ Give your answers to 1 decimal place where appropriate.
(8)
Edexcel C2 Q4
7 marks Moderate -0.3
4. Solve, for \(0 \leq x < 360\), the equation $$3 \cos ^ { 2 } x ^ { \circ } + \sin ^ { 2 } x ^ { \circ } + 5 \sin x ^ { \circ } = 0$$
Edexcel C2 Q4
8 marks Standard +0.3
  1. Find all values of \(x\) in the interval \(0 \leq x < 360 ^ { \circ }\) for which
$$2 \sin ^ { 2 } x - 2 \cos x - \cos ^ { 2 } x = 1$$
Edexcel C2 Q4
7 marks Moderate -0.3
4. Solve the equation $$\sin ^ { 2 } \theta = 4 \cos \theta ,$$ for values of \(\theta\) in the interval \(0 \leq \theta \leq 360 ^ { \circ }\).
WJEC Unit 1 Specimen Q2
6 marks Standard +0.3
2. Find all values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\) satisfying $$7 \sin ^ { 2 } \theta + 1 = 3 \cos ^ { 2 } \theta - \sin \theta$$
CAIE P1 2014 November Q5
6 marks Moderate -0.3
  1. Show that the equation \(1 + \sin x \tan x = 5 \cos x\) can be expressed as $$6 \cos ^ { 2 } x - \cos x - 1 = 0$$
  2. Hence solve the equation \(1 + \sin x \tan x = 5 \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\). The equation of a curve is \(y = x ^ { 3 } + a x ^ { 2 } + b x\), where \(a\) and \(b\) are constants.
  3. In the case where the curve has no stationary point, show that \(a ^ { 2 } < 3 b\).
  4. In the case where \(a = - 6\) and \(b = 9\), find the set of values of \(x\) for which \(y\) is a decreasing function of \(x\). \includegraphics[max width=\textwidth, alt={}, center]{8952fc09-004a-4fb6-ad80-5312095a7057-3_634_711_952_717} The diagram shows a pyramid \(O A B C X\). The horizontal square base \(O A B C\) has side 8 units and the centre of the base is \(D\). The top of the pyramid, \(X\), is vertically above \(D\) and \(X D = 10\) units. The mid-point of \(O X\) is \(M\). The unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are parallel to \(\overrightarrow { O A }\) and \(\overrightarrow { O C }\) respectively and the unit vector \(\mathbf { k }\) is vertically upwards.
  5. Express the vectors \(\overrightarrow { A M }\) and \(\overrightarrow { A C }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  6. Use a scalar product to find angle \(M A C\).
    (a) The sum, \(S _ { n }\), of the first \(n\) terms of an arithmetic progression is given by \(S _ { n } = 32 n - n ^ { 2 }\). Find the first term and the common difference.
    (b) A geometric progression in which all the terms are positive has sum to infinity 20 . The sum of the first two terms is 12.8 . Find the first term of the progression.
OCR PURE 2019 May Q6
7 marks Standard +0.3
  1. Show that the equation \(6 \cos ^ { 2 } \theta = \tan \theta \cos \theta + 4\) can be expressed in the form \(6 \sin ^ { 2 } \theta + \sin \theta - 2 = 0\).
  2. \includegraphics[max width=\textwidth, alt={}, center]{d6430776-0b87-4e5e-8f78-c6228ee163d5-4_446_1150_1119_338} The diagram shows parts of the curves \(y = 6 \cos ^ { 2 } \theta\) and \(y = \tan \theta \cos \theta + 4\), where \(\theta\) is in degrees. Solve the inequality \(6 \cos ^ { 2 } \theta > \tan \theta \cos \theta + 4\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
OCR AS Pure 2017 Specimen Q2
5 marks Moderate -0.3
2 In this question you must show detailed reasoning. Solve the equation \(2 \cos ^ { 2 } x = 2 - \sin x\) for \(0 ^ { \circ } \leq x \leq 180 ^ { \circ }\).
Edexcel C2 Q4
7 marks Moderate -0.3
4. (a) Show that the equation $$5 \cos ^ { 2 } x = 3 ( 1 + \sin x )$$ can be written as $$5 \sin ^ { 2 } x + 3 \sin x - 2 = 0 .$$ (b) Hence solve, for \(0 \leq x < 360 ^ { \circ }\), the equation $$5 \cos ^ { 2 } x = 3 ( 1 + \sin x ) ,$$ giving your answers to 1 decimal place where appropriate.
OCR MEI C2 2008 June Q10
5 marks Moderate -0.3
10 Showing your method, solve the equation \(2 \sin ^ { 2 } \theta = \cos \theta + 2\) for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).