AQA Further Paper 2 2024 June — Question 20

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionJune
TopicReduction Formulae

20 The integral \(I _ { n }\) is defined by $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { n } x \mathrm {~d} x \quad ( n \geq 0 )$$ 20
  1. Show that $$I _ { n } = \left( \frac { n - 1 } { n } \right) I _ { n - 2 } + \frac { 1 } { n \left( 2 ^ { \frac { n } { 2 } } \right) } \quad ( n \geq 2 )$$ 20
  2. Use the result from part (a) to show that $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { 6 } x d x = \frac { a \pi + b } { 192 }$$ where \(a\) and \(b\) are integers to be found.
    \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-31_2491_1755_173_123} number \section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.} Additional page, if required. number Additional page, if required.
    Write the question numbers in the left-hand margin. number \section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.} number\section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.}
    \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-36_2487_1748_175_130}