Edexcel FP2 2019 June — Question 5

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2019
SessionJune
TopicReduction Formulae

5. $$I _ { n } = \int \operatorname { cosec } ^ { n } x \mathrm {~d} x \quad n \in \mathbb { Z }$$
  1. Prove that, for \(n \geqslant 2\) $$I _ { n } = \frac { n - 2 } { n - 1 } I _ { n - 2 } - \frac { \operatorname { cosec } ^ { n - 2 } x \cot x } { n - 1 }$$
  2. Hence show that $$\int _ { \frac { \pi } { 3 } } ^ { \frac { \pi } { 2 } } \operatorname { cosec } ^ { 6 } x \mathrm {~d} x = \frac { 56 } { 135 } \sqrt { 3 }$$