Edexcel F3 2021 June — Question 4

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2021
SessionJune
TopicReduction Formulae

4. (i) $$f ( x ) = x \arccos x \quad - 1 \leqslant x \leqslant 1$$ Find the exact value of \(f ^ { \prime } ( 0.5 )\).
(ii) $$\mathrm { g } ( x ) = \arctan \left( \mathrm { e } ^ { 2 x } \right)$$ Show that $$\mathrm { g } ^ { \prime \prime } ( x ) = k \operatorname { sech } ( 2 x ) \tanh ( 2 x )$$ where \(k\) is a constant to be found.
\includegraphics[max width=\textwidth, alt={}, center]{d7a92540-e36c-4e00-bbe4-b253e09962f8-15_2647_1840_119_114}
  1. Prove that for \(n \geqslant 2\) $$( n - 1 ) I _ { n } = \tan x \sec ^ { n - 2 } x + ( n - 2 ) I _ { n - 2 }$$
  2. Hence, showing each step of your working, find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \sec ^ { 6 } x d x$$ $$I _ { n } = \int \sec ^ { n } x \mathrm {~d} x \quad n \geqslant 0$$ Prove that for \(n > 2\)