Solve via substitution then back-substitute

A question is this type if and only if it requires using a given substitution to transform the equation, solving the transformed equation, then expressing the answer in terms of the original variable.

37 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
AQA FP3 2013 January Q7
14 marks Challenging +1.2
7
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 10 y = \mathrm { e } ^ { 2 t }$$ giving your answer in the form \(y = \mathrm { f } ( t )\).
  2. Given that \(x = t ^ { \frac { 1 } { 2 } } , x > 0 , t > 0\) and \(y\) is a function of \(x\), show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t }$$ (5 marks)
  3. Hence show that the substitution \(x = t ^ { \frac { 1 } { 2 } }\) transforms the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 12 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 40 x ^ { 3 } y = 4 x ^ { 3 } \mathrm { e } ^ { 2 x ^ { 2 } }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 10 y = \mathrm { e } ^ { 2 t }$$ (2 marks)
  4. Hence write down the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 12 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 40 x ^ { 3 } y = 4 x ^ { 3 } \mathrm { e } ^ { 2 x ^ { 2 } }$$ (l mark)
AQA FP3 2006 June Q6
14 marks Challenging +1.2
6
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y$$ transforms the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = \mathrm { e } ^ { - 2 x }$$ into $$\frac { \mathrm { d } u } { \mathrm {~d} x } + 2 u = \mathrm { e } ^ { - 2 x }$$ (4 marks)
  2. By using an integrating factor, or otherwise, find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } + 2 u = \mathrm { e } ^ { - 2 x }$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = \mathrm { e } ^ { - 2 x }$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
AQA FP3 2010 June Q7
14 marks Challenging +1.2
7
  1. Given that \(x = t ^ { \frac { 1 } { 2 } } , x > 0 , t > 0\) and \(y\) is a function of \(x\), show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 t ^ { \frac { 1 } { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} t }\);
      (2 marks)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 4 t \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t }\).
      (3 marks)
  2. Hence show that the substitution \(x = t ^ { \frac { 1 } { 2 } }\) transforms the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 8 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 12 x ^ { 3 } y = 12 x ^ { 5 }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = 3 t$$ (2 marks)
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - \left( 8 x ^ { 2 } + 1 \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + 12 x ^ { 3 } y = 12 x ^ { 5 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2011 June Q6
12 marks Challenging +1.2
6 A differential equation is given by $$\left( x ^ { 3 } + 1 \right) \frac { d ^ { 2 } y } { d x ^ { 2 } } - 3 x ^ { 2 } \frac { d y } { d x } = 2 - 4 x ^ { 3 }$$
  1. Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } - 2 x$$ transforms this differential equation into $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } u } { \mathrm {~d} x } = 3 x ^ { 2 } u$$ (4 marks)
  2. Hence find the general solution of the differential equation $$\left( x ^ { 3 } + 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 3 x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2 - 4 x ^ { 3 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\). \(7 \quad\) The curve \(C _ { 1 }\) is defined by \(r = 2 \sin \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\). The curve \(C _ { 2 }\) is defined by \(r = \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }\).
  3. Find a cartesian equation of \(C _ { 1 }\).
    1. Prove that the curves \(C _ { 1 }\) and \(C _ { 2 }\) meet at the pole \(O\) and at one other point, \(P\), in the given domain. State the polar coordinates of \(P\).
    2. The point \(A\) is the point on the curve \(C _ { 1 }\) at which \(\theta = \frac { \pi } { 4 }\). The point \(B\) is the point on the curve \(C _ { 2 }\) at which \(\theta = \frac { \pi } { 4 }\). Determine which of the points \(A\) or \(B\) is further away from the pole \(O\), justifying your answer.
    3. Show that the area of the region bounded by the arc \(O P\) of \(C _ { 1 }\) and the arc \(O P\) of \(C _ { 2 }\) is \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are rational numbers.
AQA FP3 2013 June Q7
11 marks Challenging +1.3
7 A differential equation is given by $$\sin ^ { 2 } x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \sin x \cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \sin ^ { 4 } x \cos x , \quad 0 < x < \pi$$
  1. Show that the substitution $$y = u \sin x$$ where \(u\) is a function of \(x\), transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} x ^ { 2 } } + u = \sin 2 x$$
  2. Hence find the general solution of the differential equation $$\sin ^ { 2 } x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \sin x \cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \sin ^ { 4 } x \cos x$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
    (6 marks)
AQA FP3 2015 June Q6
17 marks Challenging +1.8
6 A differential equation is given by $$4 \sqrt { x ^ { 5 } } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 2 \sqrt { x } ) y = \sqrt { x } ( \ln x ) ^ { 2 } + 5 , \quad x > 0$$
  1. Show that the substitution \(x = \mathrm { e } ^ { 2 t }\) transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 2 y = 4 t ^ { 2 } + 5 \mathrm { e } ^ { - t }$$
  2. Hence find the general solution of the differential equation $$4 \sqrt { x ^ { 5 } } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 2 \sqrt { x } ) y = \sqrt { x } ( \ln x ) ^ { 2 } + 5 , \quad x > 0$$
    \includegraphics[max width=\textwidth, alt={}]{7b4a1237-bb28-4cba-84b1-35fa91d87408-14_1634_1709_1071_153}
AQA FP3 2016 June Q5
12 marks Challenging +1.2
5
  1. Express \(\frac { 1 } { ( 1 + x ) ( 2 + x ) }\) in the form \(\frac { A } { 1 + x } + \frac { B } { 2 + x }\), where \(A\) and \(B\) are integers.
  2. Use the substitution \(u = \frac { \mathrm { d } y } { \mathrm {~d} x }\) to solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \frac { 1 } { ( 1 + x ) ( 2 + x ) } \frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 + x } { 1 + x }$$ given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4\) when \(x = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
    [0pt] [11 marks]
Edexcel FP1 2019 June Q6
17 marks Challenging +1.2
  1. The concentration of a drug in the bloodstream of a patient, \(t\) hours after the drug has been administered, where \(t \leqslant 6\), is modelled by the differential equation
$$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } C } { \mathrm {~d} t ^ { 2 } } - 5 t \frac { \mathrm {~d} C } { \mathrm {~d} t } + 8 C = t ^ { 3 }$$ where \(C\) is measured in micrograms per litre.
  1. Show that the transformation \(t = \mathrm { e } ^ { x }\) transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } C } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} C } { \mathrm {~d} x } + 8 C = \mathrm { e } ^ { 3 x }$$
  2. Hence find the general solution for the concentration \(C\) at time \(t\) hours. Given that when \(t = 6 , C = 0\) and \(\frac { \mathrm { d } C } { \mathrm {~d} t } = - 36\)
  3. find the maximum concentration of the drug in the bloodstream of the patient.
Edexcel FP1 2022 June Q9
13 marks Challenging +1.8
  1. A particle \(P\) moves along a straight line.
At time \(t\) minutes, the displacement, \(x\) metres, of \(P\) from a fixed point \(O\) on the line is modelled by the differential equation $$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 x + 16 t ^ { 2 } x = 4 t ^ { 3 } \sin 2 t$$
  1. Show that the transformation \(x =\) ty transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 16 y = 4 \sin 2 t$$
  2. Hence find a general solution for the displacement of \(P\) from \(O\) at time \(t\) minutes.
Edexcel FP1 2024 June Q10
12 marks Challenging +1.3
  1. The motion of a particle \(P\) along the \(x\)-axis is modelled by the differential equation
$$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t ( t + 1 ) \frac { \mathrm { d } x } { \mathrm {~d} t } + 2 ( t + 1 ) x = 8 t ^ { 3 } \mathrm { e } ^ { t }$$ where \(P\) has displacement \(x\) metres from the origin \(O\) at time \(t\) minutes, \(t > 0\)
  1. Show that the transformation \(x = t u\) transforms the differential equation (I) into the differential equation $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} t ^ { 2 } } - 2 \frac { \mathrm {~d} u } { \mathrm {~d} t } = 8 \mathrm { e } ^ { t }$$ Given that \(P\) is at \(O\) when \(t = \ln 3\) and when \(t = \ln 5\)
  2. determine the particular solution of the differential equation (I)
Edexcel FP1 Specimen Q3
14 marks Challenging +1.2
  1. A vibrating spring, fixed at one end, has an external force acting on it such that the centre of the spring moves in a straight line. At time \(t\) seconds, \(t \geqslant 0\), the displacement of the centre \(C\) of the spring from a fixed point \(O\) is \(x\) micrometres.
The displacement of \(C\) from \(O\) is modelled by the differential equation $$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t \frac { \mathrm {~d} x } { \mathrm {~d} t } + \left( 2 + t ^ { 2 } \right) x = t ^ { 4 }$$
  1. Show that the transformation \(x = t v\) transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} t ^ { 2 } } + v = t$$
  2. Hence find the general equation for the displacement of \(C\) from \(O\) at time \(t\) seconds.
    1. State what happens to the displacement of \(C\) from \(O\) as \(t\) becomes large.
    2. Comment on the model with reference to this long term behaviour.
AQA FP3 2007 June Q5
12 marks Challenging +1.2
5
  1. A differential equation is given by $$\left( x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 2 } + 1$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } + x$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } = \frac { 2 x u } { x ^ { 2 } - 1 }$$ (4 marks)
  2. Find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } = \frac { 2 x u } { x ^ { 2 } - 1 }$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$\left( x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 2 } + 1$$ giving your answer in the form \(y = \mathrm { g } ( x )\).