Edexcel FP1 2024 June — Question 10

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2024
SessionJune
TopicSecond order differential equations

  1. The motion of a particle \(P\) along the \(x\)-axis is modelled by the differential equation
$$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 2 t ( t + 1 ) \frac { \mathrm { d } x } { \mathrm {~d} t } + 2 ( t + 1 ) x = 8 t ^ { 3 } \mathrm { e } ^ { t }$$ where \(P\) has displacement \(x\) metres from the origin \(O\) at time \(t\) minutes, \(t > 0\)
  1. Show that the transformation \(x = t u\) transforms the differential equation (I) into the differential equation $$\frac { \mathrm { d } ^ { 2 } u } { \mathrm {~d} t ^ { 2 } } - 2 \frac { \mathrm {~d} u } { \mathrm {~d} t } = 8 \mathrm { e } ^ { t }$$ Given that \(P\) is at \(O\) when \(t = \ln 3\) and when \(t = \ln 5\)
  2. determine the particular solution of the differential equation (I)