Edexcel FP1 2019 June — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
TopicSecond order differential equations

  1. The concentration of a drug in the bloodstream of a patient, \(t\) hours after the drug has been administered, where \(t \leqslant 6\), is modelled by the differential equation
$$t ^ { 2 } \frac { \mathrm {~d} ^ { 2 } C } { \mathrm {~d} t ^ { 2 } } - 5 t \frac { \mathrm {~d} C } { \mathrm {~d} t } + 8 C = t ^ { 3 }$$ where \(C\) is measured in micrograms per litre.
  1. Show that the transformation \(t = \mathrm { e } ^ { x }\) transforms equation (I) into the equation $$\frac { \mathrm { d } ^ { 2 } C } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} C } { \mathrm {~d} x } + 8 C = \mathrm { e } ^ { 3 x }$$
  2. Hence find the general solution for the concentration \(C\) at time \(t\) hours. Given that when \(t = 6 , C = 0\) and \(\frac { \mathrm { d } C } { \mathrm {~d} t } = - 36\)
  3. find the maximum concentration of the drug in the bloodstream of the patient.