Show that \(\left( z ^ { n } - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z ^ { n } - \mathrm { e } ^ { - \mathrm { i } \theta } \right) \equiv z ^ { 2 n } - ( 2 \cos \theta ) z ^ { n } + 1\).
Express \(z ^ { 4 } - z ^ { 2 } + 1\) as the product of four factors of the form \(\left( z - e ^ { \mathrm { i } \alpha } \right)\), where \(0 \leqslant \alpha < 2 \pi\).