OCR FP3 2011 June — Question 2

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJune
TopicComplex numbers 2

2 It is given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), where \(0 < \theta < 2 \pi\), and \(w = \frac { 1 + z } { 1 - z }\).
  1. Prove that \(w = \mathrm { i } \cot \frac { 1 } { 2 } \theta\).
  2. Sketch separate Argand diagrams to show the locus of \(z\) and the locus of \(w\). You should show the direction in which each locus is described when \(\theta\) increases in the interval \(0 < \theta < 2 \pi\).