OCR FP3 2008 January — Question 4

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2008
SessionJanuary
TopicComplex numbers 2

4 The integrals \(C\) and \(S\) are defined by $$C = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \cos 3 x \mathrm {~d} x \quad \text { and } \quad S = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \sin 3 x \mathrm {~d} x$$ By considering \(C + \mathrm { i } S\) as a single integral, show that $$C = - \frac { 1 } { 13 } \left( 2 + 3 \mathrm { e } ^ { \pi } \right) ,$$ and obtain a similar expression for \(S\).
(You may assume that the standard result for \(\int \mathrm { e } ^ { k x } \mathrm {~d} x\) remains true when \(k\) is a complex constant, so that \(\left. \int \mathrm { e } ^ { ( a + \mathrm { i } b ) x } \mathrm {~d} x = \frac { 1 } { a + \mathrm { i } b } \mathrm { e } ^ { ( a + \mathrm { i } b ) x } .\right)\)