| Exam Board | OCR |
| Module | FP3 (Further Pure Mathematics 3) |
| Year | 2008 |
| Session | January |
| Topic | Complex numbers 2 |
4 The integrals \(C\) and \(S\) are defined by
$$C = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \cos 3 x \mathrm {~d} x \quad \text { and } \quad S = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \sin 3 x \mathrm {~d} x$$
By considering \(C + \mathrm { i } S\) as a single integral, show that
$$C = - \frac { 1 } { 13 } \left( 2 + 3 \mathrm { e } ^ { \pi } \right) ,$$
and obtain a similar expression for \(S\).
(You may assume that the standard result for \(\int \mathrm { e } ^ { k x } \mathrm {~d} x\) remains true when \(k\) is a complex constant, so that \(\left. \int \mathrm { e } ^ { ( a + \mathrm { i } b ) x } \mathrm {~d} x = \frac { 1 } { a + \mathrm { i } b } \mathrm { e } ^ { ( a + \mathrm { i } b ) x } .\right)\)