Edexcel F2 2024 January — Question 2

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2024
SessionJanuary
TopicComplex numbers 2

2. $$z = 6 - 6 \sqrt { 3 } i$$
    1. Determine the modulus of \(z\)
    2. Show that the argument of \(z\) is \(- \frac { \pi } { 3 }\) Using de Moivre's theorem, and making your method clear,
  1. determine, in simplest form, \(z ^ { 4 }\)
  2. Determine the values of \(w\) such that \(w ^ { 2 } = z\), giving your answers in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real numbers.