5 The complex number 2 i is denoted by \(u\). The complex number with modulus 1 and argument \(\frac { 2 } { 3 } \pi\) is denoted by \(w\).
- Find in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real, the complex numbers \(w , u w\) and \(\frac { u } { w }\).
- Sketch an Argand diagram showing the points \(U , A\) and \(B\) representing the complex numbers \(u\), \(u w\) and \(\frac { u } { w }\) respectively.
- Prove that triangle \(U A B\) is equilateral.