OCR Further Pure Core 2 2018 December — Question 1

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2018
SessionDecember
TopicComplex numbers 2

1
  1. The Argand diagram below shows the two points which represent two complex numbers, \(z _ { 1 }\) and \(z _ { 2 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{e792797e-6d20-4fc3-9733-43db10f764d7-2_371_689_429_360} On the copy of the diagram in the Printed Answer Booklet
    • draw an appropriate shape to illustrate the geometrical effect of adding \(z _ { 1 }\) and \(z _ { 2 }\),
    • indicate with a cross \(( \times )\) the location of the point representing the complex number \(z _ { 1 } + z _ { 2 }\).
    • You are given that \(\arg z _ { 3 } = \frac { 1 } { 4 } \pi\) and \(\arg z _ { 4 } = \frac { 3 } { 8 } \pi\).
    In each part, sketch and label the points representing the numbers \(z _ { 3 } , z _ { 4 }\) and \(z _ { 3 } z _ { 4 }\) on the diagram in the Printed Answer Booklet. You should join each point to the origin with a straight line.
    (i) \(\left| z _ { 3 } \right| = 1.5\) and \(\left| z _ { 4 } \right| = 1.2\)
    (ii) \(\left| z _ { 3 } \right| = 0.7\) and \(\left| z _ { 4 } \right| = 0.5\)