Sign Change & Interval Methods

162 questions · 29 question types identified

Sign Change with Function Evaluation

Questions that ask to show a root exists in a given interval by directly evaluating the function at the interval endpoints and demonstrating a sign change, without requiring any rearrangement or additional analysis.

12
7.4% of questions
Show example »
2 By considering a change of sign, show that the equation \(\mathrm { e } ^ { x } - 5 x ^ { 3 } = 0\) has a root between 0 and 1 .
View full question →
Interval Bisection with Other Methods

Questions that require interval bisection followed by or combined with other numerical methods such as Newton-Raphson or linear interpolation.

10
6.2% of questions
Show example »
2. (a) Show that \(\mathrm { f } ( x ) = x ^ { 4 } + x - 1\) has a real root \(\alpha\) in the interval [0.5, 1.0].
[0pt] (b) Starting with the interval [0.5, 1.0], use interval bisection twice to find an interval of width 0.125 which contains \(\alpha\).
(c) Taking 0.75 as a first approximation, apply the Newton Raphson process twice to \(\mathrm { f } ( x )\) to obtain an approximate value of \(\alpha\). Give your answer to 3 decimal places.
View full question →
Sketch Graphs and Count Roots

A question is this type if and only if it requires sketching two curves on the same axes and using the sketch to show or explain how many real roots an equation has.

9
5.6% of questions
Show example »
  1. (a) On the same diagram, sketch and clearly label the graphs with equations
$$y = \mathrm { e } ^ { x } \quad \text { and } \quad y = 10 - x$$ Show on your sketch the coordinates of each point at which the graphs cut the axes.
(b) Explain why the equation \(\mathrm { e } ^ { x } - 10 + x = 0\) has only one solution.
(c) Show that the solution of the equation $$\mathrm { e } ^ { x } - 10 + x = 0$$ lies between \(x = 2\) and \(x = 3\)
(d) Use the iterative formula $$x _ { n + 1 } = \ln \left( 10 - x _ { n } \right) , \quad x _ { 1 } = 2$$ to calculate the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\).
Give your answers to 4 decimal places.
View full question →
Floyd's Algorithm Application

A question is this type if and only if it requires applying Floyd's algorithm to find shortest paths in a network and producing distance and route matrices.

9
5.6% of questions
Show example »
\(\mathbf { 4 }\) & 11 & 11 & 7 & 14 & 14
\hline
View full question →
Numerical Differentiation Estimates

A question is this type if and only if it asks to calculate estimates of derivatives using forward, backward, or central difference methods from tabulated data.

9
5.6% of questions
Show example »
1 The table shows some values of \(x\), together with the associated values of a function, \(\mathrm { f } ( x )\).
\(x\)1.922.1
\(\mathrm { f } ( x )\)0.58420.63090.6753
  1. Use the information in the table to calculate the most accurate estimate of \(f ^ { \prime } ( 2 )\) possible.
  2. Calculate an estimate of the error when \(f ( 2 )\) is used as an estimate of \(f ( 2.05 )\).
View full question →
Newton-Raphson with Other Methods

Questions that combine Newton-Raphson iteration with other numerical methods such as linear interpolation, interval bisection, or step-by-step methods in the same problem.

9
5.6% of questions
Show example »
2 A curve satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 ^ { x }$$ Starting at the point \(( 1,4 )\) on the curve, use a step-by-step method with a step length of 0.01 to estimate the value of \(y\) at \(x = 1.02\). Give your answer to six significant figures.
View full question →
Simpson's Rule Approximation

A question is this type if and only if it requires using Simpson's rule with a specified number of intervals to estimate a definite integral.

8
4.9% of questions
Show example »
  1. Use Simpson's rule with 4 intervals to estimate
$$\int _ { 0.4 } ^ { 2 } e ^ { x ^ { 2 } } d x$$
View full question →
Error Analysis in Approximations

A question is this type if and only if it requires calculating absolute or relative errors when approximations are used, or analyzing error propagation through rounding or chopping.

8
4.9% of questions
Show example »
1
  1. Solve the following simultaneous equations. $$\begin{aligned} & x + \quad y = 1
    & x + 0.99 y = 2 \end{aligned}$$
  2. The coefficient 0.99 is correct to two decimal places. All other coefficients in the equations are exact. With the aid of suitable calculations, explain why your answer to part (i) is unreliable.
View full question →
Linear Interpolation Only

Questions that state a root exists in the interval and only ask to apply linear interpolation without prior verification.

8
4.9% of questions
Show example »
1
  1. Show that the equation $$x ^ { 3 } + 2 x - 2 = 0$$ has a root between 0.5 and 1 .
  2. Use linear interpolation once to find an estimate of this root. Give your answer to two decimal places.
View full question →
Geometric Area Equation Setup

A question is this type if and only if it involves setting up an equation from geometric conditions (sectors, segments, triangles) that leads to a transcendental equation requiring numerical solution.

7
4.3% of questions
Show example »
4
\includegraphics[max width=\textwidth, alt={}, center]{1a4ddaa9-1ec2-4138-bfcb-a482fe6c942f-2_358_618_1082_762} The diagram shows a sector of a circle with radius \(r \mathrm {~cm}\) and centre \(O\). The chord \(A B\) divides the sector into a triangle \(A O B\) and a segment \(A X B\). Angle \(A O B\) is \(\theta\) radians.
  1. In the case where the areas of the triangle \(A O B\) and the segment \(A X B\) are equal, find the value of the constant \(p\) for which \(\theta = p \sin \theta\).
  2. In the case where \(r = 8\) and \(\theta = 2.4\), find the perimeter of the segment \(A X B\).
View full question →
Solve Logarithmic Equation Numerically

A question is this sub-type if and only if it asks to solve an equation primarily involving logarithmic functions (ln) to a specified accuracy without specifying the method.

7
4.3% of questions
Show example »
2 Solve the equation $$\ln ( 1 + x ) = 1 + \ln x$$ giving your answer correct to 2 significant figures.
View full question →
Binary Search Algorithm

A question is this type if and only if it asks to apply the binary search algorithm to locate a name or item in an ordered list.

6
3.7% of questions
Show example »
1.
\(\begin{array} { l l l l l l l l l l } 17 & 9 & 15 & 8 & 20 & 13 & 28 & 4 & 12 & 5 \end{array}\)
View full question →
Polynomial Interpolation from Data

A question is this type if and only if it asks to find a polynomial that passes through given data points using interpolation methods or difference tables.

6
3.7% of questions
Show example »
2 Fig. 2 shows 3 values of \(x\) and the associated values of a function, \(\mathrm { f } ( x )\). \begin{table}[h]
\(x\)125
\(\mathrm { f } ( x )\)516.676.6
\captionsetup{labelformat=empty} \caption{Fig. 2}
\end{table} Find a polynomial \(p ( x )\) of degree 2 to approximate \(\mathrm { f } ( x )\), giving your answer in the form \(p ( x ) = a x ^ { 2 } + b x + c\), where \(a\), \(b\) and \(c\) are constants to be determined.
View full question →
Trapezium Rule with Accuracy Analysis

Questions that use the trapezium rule and additionally require analysis of accuracy, comparison of approximations with different strip numbers, or explanation of how to improve estimates.

6
3.7% of questions
Show example »
2
  1. Use the trapezium rule, with four strips each of width 0.5 , to estimate the value of $$\int _ { 0 } ^ { 2 } \mathrm { e } ^ { x ^ { 2 } } \mathrm {~d} x$$ giving your answer correct to 3 significant figures.
  2. Explain how the trapezium rule could be used to obtain a more accurate estimate.
View full question →
Dynamic Programming Tabulation

A question is this type if and only if it involves completing or interpreting a dynamic programming table for optimization problems.

5
3.1% of questions
Show example »
3. This question should be answered on the sheet provided. Arthur is planning a bus journey from town \(A\) to town \(L\). There are various routes he can take but he will have to change buses three times - at \(B , C\) or \(D\), at \(E , F , G\) or \(H\) and at \(I , J\) or \(K\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e892e87c-1c2d-4f97-ac23-41e38663d0f0-03_764_1410_477_315} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Figure 2 shows the bus routes that Arthur can use. The number on each arc shows the average waiting time, in minutes, for a bus to come on that route. As the forecast is for rain, Arthur wishes to plan his journey so that the maximum waiting time at any one stop is as small as possible. Use dynamic programming to find the route that Arthur should use.
(9 marks)
View full question →
Linear Programming Formulation

A question is this type if and only if it asks to formulate a real-world optimization problem as a linear programming problem with constraints and objective function.

5
3.1% of questions
Show example »
1 Hussain wants to travel by train from Edinburgh to Southampton, leaving Edinburgh after 9 am and arriving in Southampton by 4 pm . He wants to leave Edinburgh as late as possible.
Hussain rings the train company to find out about the train times. Write down a question he might ask that leads to
(A) an existence problem,
(B) an optimisation problem.
View full question →
Pure Interval Bisection Only

Questions that only require applying the interval bisection method a specified number of times, without any additional methods like Newton-Raphson or linear interpolation.

5
3.1% of questions
Show example »
2
  1. Show that the equation $$x ^ { 3 } + x - 7 = 0$$ has a root between 1.6 and 1.8.
  2. Use interval bisection twice, starting with the interval in part (a), to give this root to one decimal place.
View full question →
Explain Sign Change Method Failure

A question is this type if and only if it asks to explain why the sign change method fails or cannot be used in a particular situation (e.g., discontinuity, multiple roots).

4
2.5% of questions
Show example »
2 The diagram shows part of the graph of \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a cubic polynomial in \(x\).
\includegraphics[max width=\textwidth, alt={}, center]{7298e7b9-ad52-480c-bc2b-8289aeab9ebb-04_437_620_909_274} Explain why one of the roots of the equation \(\mathrm { f } ( x ) = 0\) cannot be found by the sign change method.
View full question →
Trace Algorithm or Flowchart

A question is this type if and only if it requires tracing through a given algorithm, flowchart, or pseudocode with specific input values.

4
2.5% of questions
Show example »
1 The flowchart below has positive inputs \(X , Y\) and \(M\).
\includegraphics[max width=\textwidth, alt={}, center]{74b6f747-7045-4902-8b21-0b59c007f7f6-2_1274_643_392_242}
  1. Trace through the flowchart above using the inputs \(X = 1 , Y = 2\) and \(M = 2\). You only need to record values when they change.
  2. Explain why the process in the flowchart is finite.
View full question →
Secant Method or False Position

A question is this type if and only if it requires applying the secant method or method of false position to find successive approximations to a root.

3
1.9% of questions
Show example »
8 The graph of \(\mathrm { y } = 0.2 \cosh \mathrm { x } - 0.4 \mathrm { x }\) for values of \(x\) from 0 to 3.32 is shown on the graph below.
\includegraphics[max width=\textwidth, alt={}, center]{4023e87c-34b1-4abd-9acc-ede5e4d68c7f-08_988_1561_312_244} The equation \(0.2 \cosh x - 0.4 x = 0\) has two roots, \(\alpha\) and \(\beta\) where \(\alpha < \beta\), in the interval \(0 < x < 3\). The secant method with \(x _ { 0 } = 1\) and \(x _ { 1 } = 2\) is to be used to find \(\beta\).
  1. On the copy of the graph in the Printed Answer Booklet, show how the secant method works with these two values of \(x\) to obtain an improved approximation to \(\beta\). The spreadsheet output in the table below shows the result of applying the secant method with \(x _ { 0 } = 1\) and \(x _ { 1 } = 2\).
    IJKLM
    2\(r\)\(\mathrm { x } _ { \mathrm { r } }\)f(x)\(\mathrm { X } _ { \mathrm { r } + 1 }\)\(\mathrm { f } \left( \mathrm { x } _ { \mathrm { r } + 1 } \right)\)
    301-0.09142-0.0476
    412-0.04763.085290.95784
    523.085290.957842.05134-0.0298
    632.05134-0.02982.08259-0.0181
    742.08259-0.01812.130420.00155
    852.130420.001552.12664\(- 7 \mathrm { E } - 05\)
  2. Write down a suitable cell formula for cell J4.
  3. Write down a suitable cell formula for cell L4.
  4. Write down the most accurate approximation to \(\beta\) which is displayed in the table.
  5. Determine whether your answer to part (d) is correct to 5 decimal places. You should not calculate any more iterates.
  6. It is decided to use the secant method with starting values \(x _ { 0 } = 1\) and \(\mathrm { x } _ { 1 } = \mathrm { a }\), where \(a > 1\), to find \(\alpha\). State a suitable value for \(a\).
View full question →
Interval Bisection from Spreadsheet

Questions that present interval bisection data in spreadsheet format and require interpretation or continuation of the bisection process from given values.

3
1.9% of questions
Show example »
2 The following spreadsheet printout shows the bisection method being applied to the equation \(\mathrm { f } ( x ) = 0\), where \(\mathrm { f } ( x ) = \mathrm { e } ^ { x } - x ^ { 2 } - 2\). Some values of \(\mathrm { f } ( x )\) are shown in columns B and D.
ABCDEFG
1a\(\mathrm { f } ( a )\)bf(b)\(( a + b ) / 2\)\(\mathrm { f } ( ( a + b ) / 2 )\)mpe
21-0.2817221.3890561.50.2316890.5
31-0.281721.50.2316891.25-0.0721570.25
41.25-0.072161.50.2316891.3750.0644520.125
51.25-0.072161.3750.0644521.3125-0.0072060.0625
61.3125-0.007211.3750.0644521.343750.0277280.03125
  1. The formula in cell A 3 is \(= \mathrm { IF } ( \mathrm { F } 2 > 0\), A2, E2). State the purpose of this formula.
  2. The formula in cell C 3 is \(= \mathrm { IF } ( \mathrm { F } 2 > 0 , \ldots , \ldots )\). What are the missing cell references?
  3. In which row is the magnitude of the maximum possible error (mpe) less than \(5 \times 10 ^ { - 7 }\) for the first time?
View full question →
Pure Newton-Raphson Application

Questions that require only applying the Newton-Raphson iteration formula one or more times to find successive approximations to a root, without requiring any other numerical methods.

3
1.9% of questions
Show example »
3. $$\mathrm { f } ( x ) = x ^ { 2 } + \frac { 3 } { x } - 1 , \quad x < 0$$ The only real root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\) lies in the interval \([ - 2 , - 1 ]\).
  1. Taking - 1.5 as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to find a second approximation to \(\alpha\), giving your answer to 2 decimal places.
  2. Show that your answer to part (a) gives \(\alpha\) correct to 2 decimal places.
    tion 3continued -
View full question →
Trapezium Rule in Applied Context

Questions that apply the trapezium rule to estimate integrals arising from real-world scenarios such as velocity-time graphs, physical measurements, or geometric applications where the integral represents a practical quantity.

3
1.9% of questions
Show example »
5
  1. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0 } ^ { 12 } \ln \left( x ^ { 2 } + 5 \right) \mathrm { d } x\), giving your answer to three significant figures.
  2. A curve has equation \(y = \ln \left( x ^ { 2 } + 5 \right)\).
    1. Show that this equation can be rewritten as \(x ^ { 2 } = \mathrm { e } ^ { y } - 5\).
    2. The region bounded by the curve, the lines \(y = 5\) and \(y = 10\) and the \(y\)-axis is rotated through \(360 ^ { \circ }\) about the \(y\)-axis. Find the exact value of the volume of the solid generated.
  3. The graph with equation \(y = \ln \left( x ^ { 2 } + 5 \right)\) is stretched with scale factor 4 parallel to the \(x\)-axis, and then translated through \(\left[ \begin{array} { l } 0
    3 \end{array} \right]\) to give the graph with equation \(y = \mathrm { f } ( x )\). Write down an expression for \(\mathrm { f } ( x )\).
View full question →
Solve Exponential Equation Numerically

A question is this sub-type if and only if it asks to solve an equation primarily involving exponential functions (e^x) to a specified accuracy without specifying the method.

2
1.2% of questions
Show example »
2 Find the real root of the equation \(\frac { 2 \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } { 2 + \mathrm { e } ^ { x } } = 3\), giving your answer correct to 3 decimal places. Your working should show clearly that the equation has only one real root.
View full question →
Standard Trapezium Rule Application

Questions that require straightforward application of the trapezium rule to estimate a definite integral with a specified number of strips, without additional context or follow-up analysis.

2
1.2% of questions
Show example »
4
\includegraphics[max width=\textwidth, alt={}, center]{0355f624-3a35-4b9e-8520-af011a0fb6db-2_499_787_922_678} The diagram shows the part of the curve \(y = \sqrt { } ( 2 - \sin x )\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Use the trapezium rule with 2 intervals to estimate the value of $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { } ( 2 - \sin x ) \mathrm { d } x$$ giving your answer correct to 2 decimal places.
  2. The line \(y = x\) intersects the curve \(y = \sqrt { } ( 2 - \sin x )\) at the point \(P\). Use the iterative formula $$x _ { n + 1 } = \sqrt { } \left( 2 - \sin x _ { n } \right)$$ to determine the \(x\)-coordinate of \(P\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
View full question →
Rearrange Equation for Iteration

A question is this type if and only if it requires rearranging an equation into the form x = g(x) or similar for use in an iterative method.

1
0.6% of questions
Show example »
7 The equation \(x ^ { 2 } = x ^ { 3 } + x - 3\) has a single solution, \(x = \alpha\)
7
  1. By considering a suitable change of sign, show that \(\alpha\) lies between 1.5 and 1.6
    [0pt] [2 marks]
    7
  2. Show that the equation \(x ^ { 2 } = x ^ { 3 } + x - 3\) can be rearranged into the form $$x ^ { 2 } = x - 1 + \frac { 3 } { x }$$ 7
  3. Use the iterative formula $$x _ { n + 1 } = \sqrt { x _ { n } - 1 + \frac { 3 } { x _ { n } } }$$ with \(x _ { 1 } = 1.5\), to find \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to four decimal places.
    7
  4. Hence, deduce an interval of width 0.001 in which \(\alpha\) lies.
View full question →
Solve Mixed Transcendental Equation Numerically

A question is this sub-type if and only if it asks to solve an equation involving a combination of different transcendental functions (mixing exponentials, logarithms, trigonometric, and algebraic terms) to a specified accuracy without specifying the method.

1
0.6% of questions
Show example »
  1. Find a small positive value of \(x\) which is an approximate solution of the equation.
$$\cos x - 4 \sin x = x ^ { 2 }$$
View full question →
Sign Change with Intersection Points

Questions that ask to show two curves intersect (equivalently, that their difference has a root) in a given interval by demonstrating a sign change, typically requiring rearrangement into the form f(x) - g(x) = 0 or analysis of where curves meet.

1
0.6% of questions
Show example »
9.
\includegraphics[max width=\textwidth, alt={}]{49d985bf-7c94-4a54-88c1-c0084cd94000-3_485_945_1119_447}
The diagram shows the curve with equation \(y = 2 x - 3 \ln ( 2 x + 5 )\) and the normal to the curve at the point \(P ( - 2 , - 4 )\).
  1. Find an equation for the normal to the curve at \(P\). The normal to the curve at \(P\) intersects the curve again at the point \(Q\) with \(x\)-coordinate \(q\).
  2. Show that \(1 < q < 2\).
  3. Show that \(q\) is a solution of the equation $$x = \frac { 12 } { 7 } \ln ( 2 x + 5 ) - 2 .$$
  4. Use an iterative process based on the equation above with a starting value of 1.5 to find the value of \(q\) to 3 significant figures and justify the accuracy of your answer.
View full question →
Linear Interpolation with Prior Root Verification

Questions that require showing a root exists in the interval (via sign change) before applying linear interpolation.

0
0.0% of questions
Unclassified

Questions not yet assigned to a type.

6
3.7% of questions
Show 6 unclassified »
7
\includegraphics[max width=\textwidth, alt={}, center]{c473f577-1e96-4d11-a0d5-cdfa4873c295-12_650_720_260_708} A curve has equation \(y = \mathrm { f } ( x )\) where \(\mathrm { f } ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 6 x ^ { 2 } + 5 x - 15\). As shown in the diagram, the curve crosses the \(x\)-axis at the points \(A\) and \(B\) with coordinates \(( a , 0 )\) and \(( b , 0 )\) respectively.
  1. Use the factor theorem to show that \(( x - 3 )\) is a factor of \(\mathrm { f } ( x )\).
  2. By first finding the quotient when \(\mathrm { f } ( x )\) is divided by \(( x - 3 )\), show that $$a = - \sqrt { \frac { 5 } { 2 - a } } .$$
  3. Use an iterative formula, based on the equation in part (b), to find the value of \(a\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9b0b8db0-79fd-4ad5-88c9-737447d9f894-26_698_744_255_593} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = x \left( x ^ { 2 } - 4 \right) e ^ { - \frac { 1 } { 2 } x }$$
  1. Find \(f ^ { \prime } ( x )\). The line \(l\) is the normal to the curve at \(O\) and meets the curve again at the point \(P\). The point \(P\) lies in the 3rd quadrant, as shown in Figure 3.
  2. Show that the \(x\) coordinate of \(P\) is a solution of the equation $$x = - \frac { 1 } { 2 } \sqrt { 16 + \mathrm { e } ^ { \frac { 1 } { 2 } x } }$$
  3. Using the iterative formula $$x _ { n + 1 } = - \frac { 1 } { 2 } \sqrt { 16 + \mathrm { e } ^ { \frac { 1 } { 2 } x _ { n } } } \quad \text { with } x _ { 1 } = - 2$$ find, to 4 decimal places,
    1. the value of \(x _ { 2 }\)
    2. the \(x\) coordinate of \(P\).
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{83e12fa4-1abb-4bea-bff4-8d36757bd9c3-12_479_551_214_699} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The profit made by a company, \(\pounds P\) million, \(t\) years after the company started trading, is modelled by the equation $$P = \frac { 4 t - 1 } { 10 } + \frac { 3 } { 4 } \ln \left[ \frac { t + 1 } { ( 2 t + 1 ) ^ { 2 } } \right]$$ The graph of \(P\) against \(t\) is shown in Figure 2. According to the model,
  1. show that exactly one year after it started trading, the company had made a loss of approximately £ 830000 A manager of the company wants to know the value of \(t\) for which \(P = 0\)
  2. Show that this value of \(t\) occurs in the interval [6,7]
  3. Show that the equation \(P = 0\) can be expressed in the form $$t = \frac { 1 } { 4 } + \frac { 15 } { 8 } \ln \left[ \frac { ( 2 t + 1 ) ^ { 2 } } { t + 1 } \right]$$
  4. Using the iteration formula $$t _ { n + 1 } = \frac { 1 } { 4 } + \frac { 15 } { 8 } \ln \left[ \frac { \left( 2 t _ { n } + 1 \right) ^ { 2 } } { t _ { n } + 1 } \right] \text { with } t _ { 1 } = 6$$ find the value of \(t _ { 2 }\) and the value of \(t _ { 6 }\), giving your answers to 3 decimal places.
  5. Hence find, according to the model, how many months it takes in total, from when the company started trading, for it to make a profit.
    (2)
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c6bde466-61ec-437d-a3b4-84511a98d788-08_510_783_260_584} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = 8 x - x \mathrm { e } ^ { 3 x } , x \geqslant 0\) The curve meets the \(x\)-axis at the origin and cuts the \(x\)-axis at the point \(A\).
  1. Find the exact \(x\) coordinate of \(A\), giving your answer in its simplest form. The curve has a maximum turning point at the point \(M\).
  2. Show, by using calculus, that the \(x\) coordinate of \(M\) is a solution of $$x = \frac { 1 } { 3 } \ln \left( \frac { 8 } { 1 + 3 x } \right)$$
  3. Use the iterative formula $$x _ { n + 1 } = \frac { 1 } { 3 } \ln \left( \frac { 8 } { 1 + 3 x _ { n } } \right)$$ with \(x _ { 0 } = 0.4\) to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places.
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0a633e3-5c63-4d21-8ffa-d4e7dc43a536-14_549_958_221_493} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(C\) with equation $$y = 2 \ln ( 2 x + 5 ) - \frac { 3 x } { 2 } , \quad x > - 2.5$$ The point \(P\) with \(x\) coordinate - 2 lies on \(C\).
  1. Find an equation of the normal to \(C\) at \(P\). Write your answer in the form \(a x + b y = c\), where \(a\), \(b\) and \(c\) are integers. The normal to \(C\) at \(P\) cuts the curve again at the point \(Q\), as shown in Figure 2
  2. Show that the \(x\) coordinate of \(Q\) is a solution of the equation $$x = \frac { 20 } { 11 } \ln ( 2 x + 5 ) - 2$$ The iteration formula $$x _ { n + 1 } = \frac { 20 } { 11 } \ln \left( 2 x _ { n } + 5 \right) - 2$$ can be used to find an approximation for the \(x\) coordinate of \(Q\).
  3. Taking \(x _ { 1 } = 2\), find the values of \(x _ { 2 }\) and \(x _ { 3 }\), giving each answer to 4 decimal places.
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{42aff260-e734-48ff-a92a-674032cb0377-12_595_930_219_603} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = \mathrm { e } ^ { - 2 x } + x ^ { 2 } - 3$$ The curve \(C\) crosses the \(y\)-axis at the point \(A\). The line \(l\) is the normal to \(C\) at the point \(A\).
  1. Find the equation of \(l\), writing your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants. The line \(l\) meets \(C\) again at the point \(B\), as shown in Figure 1 .
  2. Show that the \(x\) coordinate of \(B\) is a solution of $$x = \sqrt { 1 + \frac { 1 } { 2 } x - \mathrm { e } ^ { - 2 x } }$$ Using the iterative formula $$x _ { n + 1 } = \sqrt { 1 + \frac { 1 } { 2 } x _ { n } - \mathrm { e } ^ { - 2 x _ { n } } }$$ with \(x _ { 1 } = 1\)
  3. find \(x _ { 2 }\) and \(x _ { 3 }\) to 3 decimal places.