2 Fig. 2 shows 3 values of \(x\) and the associated values of a function, \(\mathrm { f } ( x )\).
\begin{table}[h]
\(x\)
1
2
5
\(\mathrm { f } ( x )\)
5
16.6
76.6
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{table}
Find a polynomial \(p ( x )\) of degree 2 to approximate \(\mathrm { f } ( x )\), giving your answer in the form \(p ( x ) = a x ^ { 2 } + b x + c\), where \(a\), \(b\) and \(c\) are constants to be determined.