Solve Logarithmic Equation Numerically

A question is this sub-type if and only if it asks to solve an equation primarily involving logarithmic functions (ln) to a specified accuracy without specifying the method.

7 questions

CAIE P3 2004 November Q2
2 Solve the equation $$\ln ( 1 + x ) = 1 + \ln x$$ giving your answer correct to 2 significant figures.
CAIE P3 2010 November Q2
2 Solve the equation $$\ln \left( 1 + x ^ { 2 } \right) = 1 + 2 \ln x$$ giving your answer correct to 3 significant figures.
CAIE P3 2022 June Q1
1 Solve the equation \(\ln \left( \mathrm { e } ^ { 2 x } + 3 \right) = 2 x + \ln 3\), giving your answer correct to 3 decimal places.
Edexcel PMT Mocks Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{48f9a252-61a2-491d-94d0-8470aee96942-10_689_1011_294_486} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\), where \(x \in R\), \(x > 0\) $$\mathrm { f } ( x ) = ( 0.5 x - 8 ) \ln ( x + 1 ) \quad 0 \leq x \leq A$$ a. Find the value of \(A\).
b. Find \(\mathrm { f } ^ { \prime } ( x )\) The curve has a minimum turning point at \(B\).
c. Show that the \(x\)-coordinate of \(B\) is a solution of the equation $$x = \frac { 17 } { \ln ( x + 1 ) + 1 } - 1$$ d. Use the iteration formula $$x _ { n + 1 } = \frac { 17 } { \ln \left( x _ { n } + 1 \right) + 1 } - 1$$ with \(x _ { 0 } = 5\) to find the values of \(x _ { 1 }\) and the value of \(x _ { 6 }\) giving your answers to three decimal places.
Edexcel PMT Mocks Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-09_1152_1006_285_374} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = \frac { 2 x ^ { 2 } - x } { \sqrt { x } } - 2 \ln \left( \frac { x } { 2 } \right) , \quad x > 0$$ The curve has a minimum turning point at \(Q\), as shown in Figure 4.
a. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 6 x ^ { 2 } - x - 4 \sqrt { x } } { 2 x \sqrt { x } }\)
b. Show that the \(x\)-coordinate of \(Q\) is the solution of $$x = \sqrt { \frac { x } { 6 } + \frac { 2 \sqrt { x } } { 3 } }$$ To find an approximation for the \(x\)-coordinate of \(Q\), the iteration formula $$x _ { n + 1 } = \sqrt { \frac { x _ { n } } { 6 } + \frac { 2 \sqrt { x _ { n } } } { 3 } }$$ is used.
c. Taking \(x _ { 0 } = 0.8\), find the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\). Give your answers to 3 decimal places.
Edexcel Paper 2 Specimen Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{659a0479-c8c6-418b-b8a9-67ad68474023-12_624_1057_258_504} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = ( 8 - x ) \ln x , \quad x > 0$$ The curve cuts the \(x\)-axis at the points \(A\) and \(B\) and has a maximum turning point at \(Q\), as shown in Figure 2.
  1. Find the \(x\) coordinate of \(A\) and the \(x\) coordinate of \(B\).
  2. Show that the \(x\) coordinate of \(Q\) satisfies $$x = \frac { 8 } { 1 + \ln x }$$
  3. Show that the \(x\) coordinate of \(Q\) lies between 3.5 and 3.6
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 8 } { 1 + \ln x _ { n } } \quad n \in \mathbb { N }$$ with \(x _ { 1 } = 3.5\) to
    1. find the value of \(x _ { 5 }\) to 4 decimal places,
    2. find the \(x\) coordinate of \(Q\) accurate to 2 decimal places.
SPS SPS FM Pure 2024 June Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ace492d8-1dd0-401e-af74-505ca19d5e9c-20_679_1136_132_566} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = ( 8 - x ) \ln x , \quad x > 0$$ The curve cuts the \(x\)-axis at the points \(A\) and \(B\) and has a maximum turning point at \(Q\), as shown in Figure 2.
  1. Find the \(x\) coordinate of \(A\) and the \(x\) coordinate of \(B\).
  2. Show that the \(x\) coordinate of \(Q\) satisfies $$x = \frac { 8 } { 1 + \ln x }$$
  3. Show that the \(x\) coordinate of \(Q\) lies between 3.5 and 3.6
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 8 } { 1 + \ln x _ { n } } \quad n \in \mathbb { N }$$ with \(x _ { 1 } = 3.5\) to
    1. find the value of \(x _ { 5 }\) to 4 decimal places,
    2. find the \(x\) coordinate of \(Q\) accurate to 2 decimal places.