A question is this type if and only if it involves completing or interpreting a dynamic programming table for optimization problems.
5 questions
| Stage | State | Action | Working | Suboptimal maximum |
| \multirow[t]{2}{*}{3} | 0 | 0 | 1 | 1 |
| 1 | 0 | 2 | 2 | |
| \multirow[t]{4}{*}{2} | \multirow[t]{2}{*}{0} | 0 | \(1 + 1 = 2\) | \multirow[b]{2}{*}{3} |
| 1 | \(1 + 2 = 3\) | |||
| \multirow[t]{2}{*}{1} | 0 | \(3 + 1 = 4\) | \multirow[t]{2}{*}{4} | |
| 1 | \(1 + 2 = 3\) | |||
| \multirow[t]{4}{*}{1} | \multirow[t]{2}{*}{0} | 0 | \(1 + =\) | \multirow{4}{*}{} |
| 1 | \(0 + =\) | |||
| \multirow[t]{2}{*}{1} | 0 | \(0 + =\) | ||
| 1 | \(1 + =\) | |||
| \multirow[t]{2}{*}{0} | \multirow[t]{2}{*}{0} | 0 | \(2 + =\) | \multirow{2}{*}{} |
| 1 | \(2 + =\) |
| Cake | (0; 0) to (1; 0) | (1; 0) to (2; 1) | (1; 1) to (2; 0) | (2; 0) to (3; 0) | (2; 0) to (3; 1) | (2; 1) to (3; 0) | (2; 1) to (3; 1) |
| Decorating points | 1 | 1 | 2 | 1 | 1 | 1 | 1 |