Secant Method or False Position

A question is this type if and only if it requires applying the secant method or method of false position to find successive approximations to a root.

3 questions

OCR MEI Further Numerical Methods 2023 June Q8
8 The graph of \(\mathrm { y } = 0.2 \cosh \mathrm { x } - 0.4 \mathrm { x }\) for values of \(x\) from 0 to 3.32 is shown on the graph below.
\includegraphics[max width=\textwidth, alt={}, center]{4023e87c-34b1-4abd-9acc-ede5e4d68c7f-08_988_1561_312_244} The equation \(0.2 \cosh x - 0.4 x = 0\) has two roots, \(\alpha\) and \(\beta\) where \(\alpha < \beta\), in the interval \(0 < x < 3\). The secant method with \(x _ { 0 } = 1\) and \(x _ { 1 } = 2\) is to be used to find \(\beta\).
  1. On the copy of the graph in the Printed Answer Booklet, show how the secant method works with these two values of \(x\) to obtain an improved approximation to \(\beta\). The spreadsheet output in the table below shows the result of applying the secant method with \(x _ { 0 } = 1\) and \(x _ { 1 } = 2\).
    IJKLM
    2\(r\)\(\mathrm { x } _ { \mathrm { r } }\)f(x)\(\mathrm { X } _ { \mathrm { r } + 1 }\)\(\mathrm { f } \left( \mathrm { x } _ { \mathrm { r } + 1 } \right)\)
    301-0.09142-0.0476
    412-0.04763.085290.95784
    523.085290.957842.05134-0.0298
    632.05134-0.02982.08259-0.0181
    742.08259-0.01812.130420.00155
    852.130420.001552.12664\(- 7 \mathrm { E } - 05\)
  2. Write down a suitable cell formula for cell J4.
  3. Write down a suitable cell formula for cell L4.
  4. Write down the most accurate approximation to \(\beta\) which is displayed in the table.
  5. Determine whether your answer to part (d) is correct to 5 decimal places. You should not calculate any more iterates.
  6. It is decided to use the secant method with starting values \(x _ { 0 } = 1\) and \(\mathrm { x } _ { 1 } = \mathrm { a }\), where \(a > 1\), to find \(\alpha\). State a suitable value for \(a\).
OCR MEI Further Numerical Methods 2021 November Q3
3 The method of False Position is used to find a sequence of approximations to the root of an equation. The spreadsheet output showing these approximations, together with some further analysis, is shown below.
CDEFGHIJ
4af(a)b\(\mathrm { f } ( b )\)\(x _ { \text {new } }\)\(\mathrm { f } \left( x _ { \text {new } } \right)\)differenceratio
51-1.8248217.28991.09547-1.80507
61.09547-1.80507217.28991.18097-1.754180.08551
71.18097-1.75418217.28991.25641-1.662460.075440.88229
81.25641-1.66246217.28991.32164-1.527810.065230.86458
91.32164-1.52781217.28991.37672-1.357060.055080.84439
101.37672-1.35706217.28991.42208-1.16420.045360.8236
111.42208-1.1642217.28991.45853-0.966160.036460.80376
121.45853-0.96616217.28991.48719-0.778250.028660.78598
131.48719-0.77825217.2899
14
The formula in cell D5 is \(\quad = \mathrm { SINH } \left( \mathrm { C5 } ^ { \wedge } 2 \right) - \mathrm { C5 } ^ { \wedge } 3 - 2\).
  1. Write down the equation which is being solved. The formula in cell C 6 is \(\quad = \mathrm { IF } ( \mathrm { H } 5 < 0 , \mathrm { G } 5 , \mathrm { C } 5 )\).
  2. Write down a similar formula for cell E6.
  3. Calculate the values which would be displayed in cells G13 and G14 to find further approximations to the root.
  4. Explain what the values in column J tell you about
    • the order of convergence of this sequence of estimates,
    • the speed of convergence of this sequence of estimates.
OCR MEI Further Numerical Methods Specimen Q6
6 The secant method is to be used to solve the equation \(x - \ln ( \cos x ) - 1 = 0\).
  1. Show that starting with \(x _ { 0 } = - 1\) and \(x _ { 1 } = 0\) leads to the method failing to find the root between \(x = 0\) and \(x = 1\). The spreadsheet printout shows the application of the secant method starting with \(x _ { 0 } = 0\) and \(x _ { 1 } = 1\). Successive approximations to the root are in column E.
    ABCDE
    1\(x _ { n }\)\(\mathrm { f } \left( x _ { n } \right)\)\(x _ { n + 1 }\)\(\mathrm { f } \left( x _ { n + 1 } \right)\)\(x _ { n + 2 }\)
    20-110.61562650.6189549
    310.61562650.6189549-0.1758460.7036139
    40.6189549-0.17584610.7036139-0.0252450.7178053
    50.7036139-0.02524510.71780530.00116190.7171808
    60.71780530.00116190.7171808- 7.4 E -060.7171848
    70.7171808-7.402E-060.7171848-2.16E-090.7171848
    80.7171848-2.16E-090.71718483.997 E -150.7171848
  2. What feature of column B shows that this application of the secant method has been successful?
  3. Write down a suitable spreadsheet formula to obtain the value in cell E2. Some analysis of convergence is carried out, and the following spreadsheet output is obtained.
    ABCDEFGH
    1\(x _ { n }\)\(\mathrm { f } \left( x _ { n } \right)\)\(x _ { n + 1 }\)\(\mathrm { f } \left( x _ { n + 1 } \right)\)\(x _ { n + 2 }\)
    20-110.61562650.61895490.0846590.1676291.980053
    310.61562650.6189549-0.1758460.70361390.0141913-0.044-3.10054
    40.6189549-0.17584610.7036139-0.0252450.7178053-0.0006244-0.0063310.13727
    50.7036139-0.02524510.71780530.00116190.71718083.953 E -060.00029273.83899
    60.71780530.00116190.7171808- 7.4 E -060.71718481.154 E -09-1.8E-06
    70.7171808-7.402E-060.7171848- 2.16 E -090.7171848- 2.109 E -15
    80.7171848- 2.16 E -090.71718483.997 E -150.7171848
    The formula in cell F2 is =E3-E2. The formula in cell G2 is =F3/F2. The formula in cell H2 is =F3/(F2\^{}2).
  4. (A) Explain the purpose of each of these three formulae.
    (B) Explain the significance of the values in columns G and H in terms of the rate of convergence of the secant method.
  5. Explain why the values in cells F6 and F7 are not 0 . [Question 7 is printed overleaf.]