A question is this type if and only if it requires using Simpson's rule with a specified number of intervals to estimate a definite integral.
8 questions
| F | G | H | I | ||
| 3 | \(n\) | \(\mathrm { M } _ { \mathrm { n } }\) | \(\mathrm { T } _ { \mathrm { n } }\) | \(\mathrm { S } _ { 2 \mathrm { n } }\) | |
| 4 | 1 | 0.2436699 | 0.1479020 | ||
| 5 | 2 | 0.2306967 |
| B | C | D | |
| 3 | \(x\) | \(\mathrm { f } ( x )\) | \(\mathrm { M } _ { 1 }\) |
| 4 | 1.5 | 1.3103707 | 0.65518535 |
| \(n\) | \(\mathrm { M } _ { n }\) | \(\mathrm {~T} _ { n }\) | \(\mathrm {~S} _ { 2 n }\) |
| 1 | 0.612547 | 1 | |
| 2 | 0.639735 |
| n | \(\mathrm { S } _ { 2 n }\) | difference | ratio |
| 1 | |||
| 2 | |||
| 4 | 0.674353 | -0.0209 | |
| 8 | 0.665199 | -0.00915 | 0.438059 |
| 16 | 0.661297 | -0.0039 | 0.426286 |
| 32 | 0.659675 | -0.00162 | 0.415762 |
| 64 | 0.659015 | -0.00066 | 0.406785 |