CAIE P2 2012 November — Question 4

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2012
SessionNovember
TopicSign Change & Interval Methods
TypeStandard Trapezium Rule Application

4
\includegraphics[max width=\textwidth, alt={}, center]{0355f624-3a35-4b9e-8520-af011a0fb6db-2_499_787_922_678} The diagram shows the part of the curve \(y = \sqrt { } ( 2 - \sin x )\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Use the trapezium rule with 2 intervals to estimate the value of $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { } ( 2 - \sin x ) \mathrm { d } x$$ giving your answer correct to 2 decimal places.
  2. The line \(y = x\) intersects the curve \(y = \sqrt { } ( 2 - \sin x )\) at the point \(P\). Use the iterative formula $$x _ { n + 1 } = \sqrt { } \left( 2 - \sin x _ { n } \right)$$ to determine the \(x\)-coordinate of \(P\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.