AQA
Paper 1
2024
June
Q2
1 marks
Easy -1.3
2 The function f is defined by \(\mathrm { f } ( x ) = \mathrm { e } ^ { x } + 1\) for \(x \in \mathbb { R }\)
Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\)
Tick ( ✓ ) one box.
\(\mathrm { f } ^ { - 1 } ( x ) = \ln ( x - 1 )\)
\includegraphics[max width=\textwidth, alt={}, center]{0320e0a6-adc0-440a-b1da-d1a49fe06179-03_113_113_534_804}
\(\mathrm { f } ^ { - 1 } ( x ) = \ln ( x ) - 1\)
\includegraphics[max width=\textwidth, alt={}, center]{0320e0a6-adc0-440a-b1da-d1a49fe06179-03_109_113_689_804}
\(\mathrm { f } ^ { - 1 } ( x ) = \frac { 1 } { \mathrm { e } ^ { x } + 1 }\)
\includegraphics[max width=\textwidth, alt={}, center]{0320e0a6-adc0-440a-b1da-d1a49fe06179-03_113_108_840_804}
\(\mathrm { f } ^ { - 1 } ( x ) = \frac { x - 1 } { \mathrm { e } }\)
\includegraphics[max width=\textwidth, alt={}, center]{0320e0a6-adc0-440a-b1da-d1a49fe06179-03_108_109_991_808}
AQA
Paper 1
2024
June
Q19
7 marks
Standard +0.3
19 A curve has equation
$$y ^ { 3 } \mathrm { e } ^ { 2 x } + 2 y - 16 x = k$$
where \(k\) is a constant.
The curve has a stationary point on the \(y\)-axis.
Determine the value of \(k\)
2 A gardener stores rainwater in a cylindrical container.
The container has a height of 130 centimetres.
The gardener empties the water from the container through a hose.
The hose is attached 5 centimetres from the bottom of the container.
At time \(t\) minutes after the hose is switched on, the depth of water, \(h\) centimetres, in the container decreases at a rate which is proportional to \(h - 5\)
Initially the container of water is full, and the depth of water is decreasing at a rate of 1.5 centimetres per minute.