(ii) State the correct solutions to the equation
$$\sin 2 \theta \operatorname { cosec } \theta + \cos 2 \theta \sec \theta = 3 \text { for } 0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }$$
Figure 2 below shows a 1.5 metre length of pipe.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{0320e0a6-adc0-440a-b1da-d1a49fe06179-26_335_693_502_740}
\end{figure}
The symmetrical cross-section of the pipe is shown below, in Figure 3, where \(x\) and \(y\) are measured in centimetres.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 3}
\includegraphics[alt={},max width=\textwidth]{0320e0a6-adc0-440a-b1da-d1a49fe06179-26_652_734_1247_717}
\end{figure}
Use the trapezium rule, with the values shown in the table below, to find the best estimate for the volume of the pipe.
| \(\boldsymbol { x }\) | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 2 |
| \(\boldsymbol { y }\) | - 3 | - 2.943 | - 2.752 | - 2.353 | - 1.572 | 0 |