Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel F2 2014 June Q1
6 marks Standard +0.3
  1. (a) Show that
$$\frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) } \equiv \frac { 1 } { 2 ( r + 1 ) ( r + 2 ) } - \frac { 1 } { 2 ( r + 2 ) ( r + 3 ) }$$ (b) Hence, or otherwise, find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) ( r + 3 ) }$$ giving your answer as a single fraction in its simplest form.
Edexcel F2 2014 June Q2
7 marks Standard +0.3
2. Use algebra to find the set of values of \(x\) for which $$\frac { 6 } { x - 3 } \leqslant x + 2$$
Edexcel F2 2014 June Q3
5 marks Standard +0.3
3. Solve the equation $$z ^ { 5 } = 16 - 16 \mathrm { i } \sqrt { 3 }$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(\theta\) is in terms of \(\pi\) and \(0 \leqslant \theta < 2 \pi\).
Edexcel F2 2014 June Q4
7 marks Challenging +1.2
4. A transformation from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { z } { z + 3 } , \quad z \neq - 3$$ Under this transformation, the circle \(| z | = 2\) in the \(z\)-plane is mapped onto a circle \(C\) in the \(w\)-plane. Determine the centre and the radius of the circle \(C\).
Edexcel F2 2014 June Q5
12 marks Challenging +1.2
5. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 0$$
  1. Show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = \left( a x ^ { 2 } + b \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$$ where \(a\) and \(b\) are constants to be found. Given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) at \(x = 0\)
  2. find a series solution for \(y\) in ascending powers of \(x\) up to and including the term in \(x ^ { 4 }\)
  3. use your series to estimate the value of \(y\) at \(x = - 0.2\), giving your answer to four decimal places.
Edexcel F2 2014 June Q6
9 marks Standard +0.3
6. $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + ( 1 - 2 x ) y = x , \quad x > 0$$ Find the general solution of the differential equation, giving your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel F2 2014 June Q7
7 marks Standard +0.8
7. The point \(P\) represents a complex number \(z\) on an Argand diagram, where $$| z + 1 | = | 2 z - 1 |$$ and the point \(Q\) represents a complex number \(w\) on the Argand diagram, where $$| w | = | w - 1 + \mathrm { i } |$$ Find the exact coordinates of the points where the locus of \(P\) intersects the locus of \(Q\).
Edexcel F2 2014 June Q8
12 marks Challenging +1.2
8. (a) Show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 13 y = 0 , \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 13 y = 0$$ (b) Hence find the general solution of the differential equation (I).
Edexcel F2 2014 June Q9
10 marks Challenging +1.2
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{77d00a35-e947-41ef-8d80-5a573702ed39-14_643_1274_251_342} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(C _ { 1 }\) with polar equation \(r = 2 a \sin 2 \theta , 0 \leqslant \theta \leqslant \frac { \pi } { 2 }\), and the circle \(C _ { 2 }\) with polar equation \(r = a , 0 \leqslant \theta \leqslant 2 \pi\), where \(a\) is a positive constant.
  1. Find, in terms of \(a\), the polar coordinates of the points where the curve \(C _ { 1 }\) meets the circle \(C _ { 2 }\) The regions enclosed by the curve \(C _ { 1 }\) and the circle \(C _ { 2 }\) overlap and the common region \(R\) is shaded in Figure 1.
  2. Find the area of the shaded region \(R\), giving your answer in the form \(\frac { 1 } { 12 } a ^ { 2 } ( p \pi + q \sqrt { 3 } )\), where \(p\) and \(q\) are integers to be found.
Edexcel F2 2015 June Q1
7 marks Moderate -0.3
  1. Using algebra, find the set of values of \(x\) for which
$$\frac { x } { x + 2 } < \frac { 2 } { x + 5 }$$
Edexcel F2 2015 June Q2
5 marks Standard +0.8
  1. (a) Express \(\frac { 1 } { ( r + 6 ) ( r + 8 ) }\) in partial fractions.
    (b) Hence show that
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 6 ) ( r + 8 ) } = \frac { n ( a n + b ) } { 56 ( n + 7 ) ( n + 8 ) }$$ where \(a\) and \(b\) are integers to be found.
Edexcel F2 2015 June Q3
10 marks Challenging +1.2
  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$ (b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Edexcel F2 2015 June Q4
9 marks Challenging +1.2
  1. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by
$$w = \frac { z - 1 } { z + 1 } , \quad z \neq - 1$$ The line in the \(z\)-plane with equation \(y = 2 x\) is mapped by \(T\) onto the curve \(C\) in the \(w\)-plane.
  1. Show that \(C\) is a circle and find its centre and radius. The region \(y < 2 x\) in the \(z\)-plane is mapped by \(T\) onto the region \(R\) in the \(w\)-plane.
  2. Sketch circle \(C\) on an Argand diagram and shade and label region \(R\).
Edexcel F2 2015 June Q5
9 marks Challenging +1.2
  1. Given that \(y = \cot x\),
    1. show that
    $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 \cot x + 2 \cot ^ { 3 } x$$
  2. Hence show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = p \cot ^ { 4 } x + q \cot ^ { 2 } x + r$$ where \(p , q\) and \(r\) are integers to be found.
  3. Find the Taylor series expansion of \(\cot x\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 3 }\).
Edexcel F2 2015 June Q6
13 marks Challenging +1.2
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \sin x$$ Given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\) (b) find the particular solution of differential equation (I).
Edexcel F2 2015 June Q7
8 marks Standard +0.8
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ee9a9df3-f7a4-41d0-bf8b-e44340c401d6-13_458_933_251_504} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the two curves given by the polar equations $$\begin{array} { l l } r = \sqrt { 3 } \sin \theta , & 0 \leqslant \theta \leqslant \pi \\ r = 1 + \cos \theta , & 0 \leqslant \theta \leqslant \pi \end{array}$$
  1. Verify that the curves intersect at the point \(P\) with polar coordinates \(\left( \frac { 3 } { 2 } , \frac { \pi } { 3 } \right)\). The region \(R\), bounded by the two curves, is shown shaded in Figure 1.
  2. Use calculus to find the exact area of \(R\), giving your answer in the form \(a ( \pi - \sqrt { 3 } )\), where \(a\) is a constant to be found.
Edexcel F2 2015 June Q8
14 marks Challenging +1.2
  1. (a) Show that
$$\left( z + \frac { 1 } { z } \right) ^ { 3 } \left( z - \frac { 1 } { z } \right) ^ { 3 } = z ^ { 6 } - \frac { 1 } { z ^ { 6 } } - k \left( z ^ { 2 } - \frac { 1 } { z ^ { 2 } } \right)$$ where \(k\) is a constant to be found. Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), where \(\theta\) is real,
(b) show that
  1. \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\)
  2. \(z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta\) (c) Hence show that $$\cos ^ { 3 } \theta \sin ^ { 3 } \theta = \frac { 1 } { 32 } ( 3 \sin 2 \theta - \sin 6 \theta )$$ (d) Find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 8 } } \cos ^ { 3 } \theta \sin ^ { 3 } \theta d \theta$$
Edexcel F2 2016 June Q1
6 marks Standard +0.3
  1. (a) Express \(\frac { 1 } { 4 r ^ { 2 } - 1 }\) in partial fractions.
    (b) Hence prove that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$ (c) Find the exact value of $$\sum _ { r = 9 } ^ { 25 } \frac { 5 } { 4 r ^ { 2 } - 1 }$$
Edexcel F2 2016 June Q2
6 marks Standard +0.8
2. Use algebra to find the set of values of \(x\) for which $$\left| x ^ { 2 } - 9 \right| < | 1 - 2 x |$$
Edexcel F2 2016 June Q3
6 marks Standard +0.8
  1. Find, in terms of \(k\), where \(k\) is a positive integer, the general solution of the differential equation
$$( 1 + x ) \frac { \mathrm { d } y } { \mathrm {~d} x } + k y = x ^ { \frac { 1 } { 2 } } ( 1 + x ) ^ { 2 - k } , \quad x > 0$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(6)
Edexcel F2 2016 June Q4
8 marks Standard +0.8
4. $$f ( x ) = \sin \left( \frac { 3 } { 2 } x \right)$$
  1. Find the Taylor series expansion for \(\mathrm { f } ( x )\) about \(\frac { \pi } { 3 }\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 4 }\)
  2. Hence obtain an estimate of \(\sin \frac { 1 } { 2 }\), giving your answer to 4 decimal places.
Edexcel F2 2016 June Q5
7 marks Challenging +1.8
5. The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 2 z - 1 } { z + 3 } , \quad z \neq - 3$$ The circle in the \(z\)-plane with equation \(x ^ { 2 } + y ^ { 2 } = 1\), where \(z = x + \mathrm { i } y\), is mapped by \(T\) onto the circle \(C\) in the \(w\)-plane. Find the centre and the radius of \(C\).
Edexcel F2 2016 June Q6
14 marks Standard +0.8
6. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 3 x ^ { 2 } + 2 x + 1$$ (9)
(b) Find the particular solution of this differential equation for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\) (5)
Edexcel F2 2016 June Q7
11 marks Challenging +1.2
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{84aadcb2-399f-4168-94c6-4e6ed0450d6d-12_866_1026_274_468} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curves \(C _ { 1 }\) and \(C _ { 2 }\) with polar equations $$\begin{array} { l l } C _ { 1 } : r = \frac { 3 } { 2 } \cos \theta , & 0 \leqslant \theta \leqslant \frac { \pi } { 2 } \\ C _ { 2 } : r = 3 \sqrt { 3 } - \frac { 9 } { 2 } \cos \theta , & 0 \leqslant \theta \leqslant \frac { \pi } { 2 } \end{array}$$ The curves intersect at the point \(P\).
  1. Find the polar coordinates of \(P\). The region \(R\), shown shaded in Figure 1, is enclosed by the curves \(C _ { 1 }\) and \(C _ { 2 }\) and the initial line.
  2. Find the exact area of \(R\), giving your answer in the form \(p \pi + q \sqrt { 3 }\) where \(p\) and \(q\) are rational numbers to be found.
Edexcel F2 2016 June Q8
10 marks Challenging +1.2
8. (a) Use de Moivre's theorem to show that $$\cos ^ { 5 } \theta \equiv p \cos 5 \theta + q \cos 3 \theta + r \cos \theta$$ where \(p , q\) and \(r\) are rational numbers to be found.
(b) Hence, showing all your working, find the exact value of $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 3 } } \cos ^ { 5 } \theta \mathrm {~d} \theta$$