| Exam Board | Edexcel |
| Module | F2 (Further Pure Mathematics 2) |
| Year | 2014 |
| Session | June |
| Topic | Second order differential equations |
8. (a) Show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation
$$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 13 y = 0 , \quad x > 0$$
into the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 13 y = 0$$
(b) Hence find the general solution of the differential equation (I).